Article

Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet.

Department of Applied Science, National Hsinchu University of Education, No.521 Nanda Rd., Hsinchu, Taiwan.
Food & function 11/2011; 3(2):170-7. DOI: 10.1039/c1fo10157a
Source: PubMed

ABSTRACT Although green tea extract has been reported to suppress hyperlipidemia, it is unclear how tea extracts prepared from green, oolong, black and pu-erh teas modulate fatty acid synthase expression in rats fed on a high-fructose diet. In this animal study, we evaluated the hypolipidemic and hypoleptinemia effect of these four different tea leaves fed to male Wistar rats for 12 weeks. The results showed that a fructose-rich diet significantly elevated serum triacylglycerols, cholesterol, insulin, and leptin concentrations, as compared with those in the control group. Interestingly, consuming tea leaves for 12 weeks almost normalized the serum triacylglycerols concentrations. Again, rats fed with fructose/green tea and fructose/pu-erh tea showed the greatest reduction in serum TG, cholesterol, insulin and leptin levels. In contrast, serum cholesterol and insulin concentrations of the fructose/oolong tea-fed rats did not normalize. The relative epididymal adipose tissue weight was lower in all rats supplemented with tea leaves than those fed with fructose alone. There was molecular evidence of improved lipid homeostasis according to fatty acid synthase (FAS) protein expression. Furthermore, supplementation of green, black, and pu-erh tea leaves significantly decreased hepatic FAS mRNA and protein levels, and increased AMPK phosphorylation, compared with those of rats fed with fructose only. These findings suggest that the intake of green, black, and pu-erh tea leaves ameliorated the fructose-induced hyperlipidemia and hyperleptinemia state in part through the suppression of FAS protein levels and increased AMPK phosphorylation.

0 Bookmarks
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Green tea (GT) and caffeine in combination were shown to increase energy expenditure and fat oxidation, but less is known about the effects of black tea (BT) and oolong tea (OT). This study investigated whether decaffeinated polyphenol extracts from GT, BT, and OT decrease body fat and inflammation in male C57BL/6J mice fed high-fat /high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose)] diets. Mice were fed either an HF/HS diet with 0.25% of polyphenol from GT, OT, or BT or a low-fat/high-sucrose [LF/HS (10.6% energy from fat, 25% energy from sucrose)] diet for 20 wk. Monomeric tea polyphenols were found in the liver and adipose tissue of mice fed the HF/HS diet with GT polyphenols (GTPs) and OT polyphenols (OTPs) but not BT polyphenols (BTPs). Treatment with GTPs, OTPs, BTPs, and an LF/HS diet led to significantly lower body weight, total visceral fat volume by MRI, and liver lipid weight compared with mice in the HF/HS control group. Only GTPs reduced food intake significantly by ∼10%. GTP, BTP, and LF/HS-diet treatments significantly reduced serum monocyte chemotactic protein-1 (MCP-1) compared with HF/HS controls. In mesenteric fat, Mcp1 gene expression was significantly decreased by treatment with GTPs, BTPs, OTPs, and an LF/HS diet and in liver tissue by GTP and BTP treatments. Mcp1 gene expression in epididymal fat was significantly decreased by the BTP and LF/HS diet interventions. In epididymal fat, consistent with an anti-inflammatory effect, adiponectin gene expression was significantly increased by GTPs and OTPs. Angiogenesis during adipose tissue expansion is anti-inflammatory by maintaining adipocyte perfusion. We observed significantly increased gene expression of vascular endothelial growth factor A by GTPs and vascular endothelial growth factor receptor 2 by BTPs and the LF/HS diet and a decrease in pigment epithelium-derived factor gene expression by OTPs and BTPs. In summary, all 3 tea polyphenol extracts induced weight loss and anti-inflammatory and angiogenic effects, although the tissue content of polyphenol differed significantly.
    The Journal of nutrition. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the hypolipidemic effect and potential mechanisms of T. mongolicum extracts. T. mongolicum was extracted by refluxing three times with water (TM-1), 50% ethanol (TM-2) and 95% ethanol (TM-3). TM-2 contained components with the most effective hypolipidemic potentials in HepG2 cells. Extended administration of TM-2 stimulated a significant reduction in body weight and levels of serum triglyceride LDL-C and total cholesterol in rats. To evaluate the bioactive compounds, we successively fractionated TM-2 with n-hexane (TM-4), dichloromethane (TM-5), ethyl acetate (TM-6), and water (TM-7). TM-4 fraction had the most effective hypolipidemic potential in HepG2 cells, and it decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) through the phosphorylation of AMP-activated protein kinase (AMPK). Linoleic acid, phytol and tetracosanol are bioactive compounds identified from TM-4. These results suggest that T. mongolicum is expected to be useful for hypolipidemic effects.
    Food & Function 06/2014; · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The anti-diabetic effect of green tea fermented by cheonggukjang was evaluated using KK- mice, an animal model of type 2 diabetes mellitus. Over a 90 day testing period, food and water intake decreased significantly in the group fed fermented green tea (FGT) and a group fed commercially available health functional food (PC), when compared with a diabetic control group (DC). The blood glucose levels of FGT mice were lower than in DC mice throughout the test period and were similar to the levels in PC after 60 days. Levels of Hemoglobin A1c (HbA1c) levels and insulin resistance were lower in mice of the FGT group than in mice of the DC group. DNA microarray analysis showed that administration of FGT increased the abundance of 12 mRNA transcripts related to diabetes. Whereas FGT increased hexokinase transcripts related to glycolysis more than 37 fold, levels of Pdx1 (pancreatic and duodenal homeobox1) and Cacna1e (calcium channel) transcripts increased more than 1.8 fold.
    Korean Journal of Food Science and Technology. 01/2013; 45(4).