Article

SH3 domain-based phototrapping in living cells reveals Rho family GAP signaling complexes.

Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA.
Science Signaling (Impact Factor: 7.65). 11/2011; 4(201):rs13. DOI: 10.1126/scisignal.2002189
Source: PubMed

ABSTRACT Rho family GAPs [guanosine triphosphatase (GTPase) activating proteins] negatively regulate Rho family GTPase activity and therefore modulate signaling events that control cytoskeletal dynamics. The spatial distribution of these GAPs and their specificity toward individual GTPases are controlled by their interactions with various proteins within signaling complexes. These interactions are likely mediated through the Src homology 3 (SH3) domain, which is abundant in the Rho family GAP proteome and exhibits a micromolar binding affinity, enabling the Rho family GAPs to participate in transient interactions with multiple binding partners. To capture these elusive GAP signaling complexes in situ, we developed a domain-based proteomics approach, starting with in vivo phototrapping of SH3 domain-binding proteins and the mass spectrometry identification of associated proteins for nine representative Rho family GAPs. After the selection of candidate binding proteins by cluster analysis, we performed peptide array-based high-throughput in vitro binding assays to confirm the direct interactions and map the SH3 domain-binding sequences. We thereby identified 54 SH3-mediated binding interactions (including 51 previously unidentified ones) for nine Rho family GAPs. We constructed Rho family GAP interactomes that provided insight into the functions of these GAPs. We further characterized one of the predicted functions for the Rac-specific GAP WRP and identified a role for WRP in mediating clustering of the postsynaptic scaffolding protein gephyrin and the GABA(A) (γ-aminobutyric acid type A) receptor at inhibitory synapses.

0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inverse F-BAR (IF-BAR) domain proteins srGAP1, srGAP2 and srGAP3 are implicated in neuronal development and may be linked to mental retardation, schizophrenia and seizure. A partially overlapping expression pattern and highly similar protein structures indicate a functional redundancy of srGAPs in neuronal development. Our previous study suggests that srGAP3 negatively regulates neuronal differentiation in a Rac1-dependent manner in mouse Neuro2a cells. Here we show that exogenously expressed srGAP1 and srGAP2 are sufficient to inhibit valporic acid (VPA)-induced neurite initiation and growth in the mouse Neuro2a cells. While ectopic- or over-expression of RhoGAP-defective mutants, srGAP1R542A and srGAP2R527A exert a visible inhibitory effect on neuronal differentiation. Unexpectedly, knockdown of endogenous srGAP2 fails to facilitate the neuronal differentiation induced by VPA, but promotes neurite outgrowth of differentiated cells. All three IF-BAR domains from srGAP1-3 can induce filopodia formation in Neuro2a, but the isolated IF-BAR domain from srGAP2, not from srGAP1 and srGAP3, can promote VPA-induced neurite initiation and neuronal differentiation. We identify biochemical and functional interactions of the three srGAPs family members. We propose that srGAP3-Rac1 signaling may be required for the effect of srGAP1 and srGAP2 on attenuating neuronal differentiation. Furthermore, inhibition of Slit-Robo interaction can phenocopy a loss-of-function of srGAP3, indicating that srGAP3 may be dedicated to the Slit-Robo pathway. Our results demonstrate the interplay between srGAP1, srGAP2 and srGAP3 regulates neuronal differentiation and neurite outgrowth. These findings may provide us new insights into the possible roles of srGAPs in neuronal development and a potential mechanism for neurodevelopmental diseases.
    PLoS ONE 03/2013; 8(3). DOI:10.1371/journal.pone.0057865 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Slit-Robo GTPase activating protein 3 (srGAP3) is an important modulator of actin cytoskeletal dynamics and has an important influence on a variety of neurodevelopmental processes. Mutations in the SRGAP3 gene on chromosome 3p25 have been found in patients with intellectual disability. Genome-wide association studies and behavioral assays of knockout mice had also revealed SRGAP3 as a risk gene for schizophrenia. We have recently shown that srGAP3 protein undergoes regulated shuttling between the cytoplasm and the nucleus during neuronal development. It is shown here that nuclear-localized srGAP3 interacts with the SWI/SNF remodeling factor Brg1. This interaction is mediated by the C-terminal of srGAP3 and the ATPase motif of Brg1. In the primary cultured rat cortical neurons, the levels of nuclear-localized srGAP3 and its interaction with Brg1 have a significant impact on dendrite complexity. Furthermore, the interaction between srGAP3 and Brg1 was also involved in valporic acid (VPA) -induced neuronal differentiation of Neuro2a cells. We then show that GTP-bound Rac1 and GAP-43 may be potential mediators of nuclear srGAP3 and Brg1. Our results not only indicate a novel signaling pathway that contributes to neuronal differentiation and dendrite morphology, but also implicate a novel molecular mechanism underlying srGAP3 regulation of gene expression.
    Molecular and Cellular Neuroscience 05/2014; DOI:10.1016/j.mcn.2014.02.005 · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinases are the second largest human protein family, but in terms of research interest, both basic and applied, they are surely the most popular. Over the past decade, many techniques and approaches for studying the kinome have been described and the pace of development is ever increasing. Presently, a molecular biologist can approach the kinome from many different angles: what kinases are active during a specific cell state of interest or become activated in response to a specific stimulus; what are the effects of controlling the activation status of an individual kinase; what substrates are targeted by a particular kinase, either in general or under particular conditions; and what kinase is responsible for targeting a specific phosphorylation site of interest? These are some of the more commonly asked questions during any kinase-centric research project and different strategies have been devised for answering such queries. In this review, we outline the most promising of these approaches, particularly those with a capacity for high-throughput studies. This article is part of a Special Issue entitled: Proteomics from protein structures to clinical applications (CNPN 2012).
    Journal of proteomics 10/2012; 81. DOI:10.1016/j.jprot.2012.10.015 · 3.93 Impact Factor

Preview

Download
6 Downloads
Available from