Article

Hyperinsulinemic-euglycemic clamps in conscious, unrestrained mice.

Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute at Lake Nona, USA.
Journal of Visualized Experiments 01/2011; DOI: 10.3791/3188
Source: PubMed

ABSTRACT Type 2 diabetes is characterized by a defect in insulin action. The hyperinsulinemic-euglycemic clamp, or insulin clamp, is widely considered the "gold standard" method for assessing insulin action in vivo. During an insulin clamp, hyperinsulinemia is achieved by a constant insulin infusion. Euglycemia is maintained via a concomitant glucose infusion at a variable rate. This variable glucose infusion rate (GIR) is determined by measuring blood glucose at brief intervals throughout the experiment and adjusting the GIR accordingly. The GIR is indicative of whole-body insulin action, as mice with enhanced insulin action require a greater GIR. The insulin clamp can incorporate administration of isotopic 2[(14)C]deoxyglucose to assess tissue-specific glucose uptake and [3-(3)H]glucose to assess the ability of insulin to suppress the rate of endogenous glucose appearance (endoRa), a marker of hepatic glucose production, and to stimulate the rate of whole-body glucose disappearance (Rd). The miniaturization of the insulin clamp for use in genetic mouse models of metabolic disease has led to significant advances in diabetes research. Methods for performing insulin clamps vary between laboratories. It is important to note that the manner in which an insulin clamp is performed can significantly affect the results obtained. We have published a comprehensive assessment of different approaches to performing insulin clamps in conscious mice(1) as well as an evaluation of the metabolic response of four commonly used inbred mouse strains using various clamp techniques(2). Here we present a protocol for performing insulin clamps on conscious, unrestrained mice developed by the Vanderbilt Mouse Metabolic Phenotyping Center (MMPC; URL: www.mc.vanderbilt.edu/mmpc). This includes a description of the method for implanting catheters used during the insulin clamp. The protocol employed by the Vanderbilt MMPC utilizes a unique two-catheter system(3). One catheter is inserted into the jugular vein for infusions. A second catheter is inserted into the carotid artery, which allows for blood sampling without the need to restrain or handle the mouse. This technique provides a significant advantage to the most common method for obtaining blood samples during insulin clamps which is to sample from the severed tip of the tail. Unlike this latter method, sampling from an arterial catheter is not stressful to the mouse(1). We also describe methods for using isotopic tracer infusions to assess tissue-specific insulin action. We also provide guidelines for the appropriate presentation of results obtained from insulin clamps.

0 Bookmarks
 · 
250 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Recent findings have shown the intrauterine environment can negatively influence long-term insulin sensitivity in the offspring. In an attempt to be pro-active, we set out to explore maternal voluntary exercise as an intervention in order to improve offspring insulin sensitivity and glucose homeostasis. METHODS: Female Sprague Dawley rats were split into sedentary and exercise groups with the exercise cohort having voluntary access to a running wheel in the cage prior to and during mating, pregnancy, and nursing. Female offspring were weaned into sedentary cages. Glucose tolerance tests and hyperinsulinemic-euglycemic clamp were performed in adult offspring to evaluate glucose regulation and insulin sensitivity. RESULTS: Adult female offspring born to exercised dams had enhanced glucose disposal during glucose tolerance testing (P < 0.05) as well as increased glucose infusion rates (P < 0.01) and whole body glucose turnover rates (P < 0.05) during hyperinsulinemic-euglycemic clamp testing compared to offspring from sedentary dams. Offspring from exercised dams also had decreased insulin levels (P < 0.01) and hepatic glucose production (P < 0.05) during the clamp procedure compared to offspring born to sedentary dams. Offspring from exercised dams had increased glucose uptake in skeletal muscle (P < 0.05) and decreased heart glucose uptake (P < 0.01) compared to offspring from sedentary dams in response to insulin infusion during the clamp procedure. CONCLUSIONS: Exercise during pregnancy enhances offspring insulin sensitivity and improves offspring glucose homeostasis. This can decrease offspring susceptibility to insulin resistant related disease such as type 2 diabetes mellitus. Maternal exercise could be an easy, short-term, non-pharmacological method of preventing disease in future generations.
    Medicine and science in sports and exercise 12/2012; · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Renal scintigraphy using 99mTc-mercaptoacetyltriglycine (99mTc-MAG3) is widely used for the assessment of renal function in humans. However, the application of this method to animal models of renal disease is currently limited, especially in rodents. Here, we have applied 99mTc-MAG3 renal scintigraphy to a mouse model of unilateral ureteral obstruction (UUO) and evaluated its utility in studying obstructive renal disease. METHODS: UUO mice were generated by complete ligation of the left ureter. Sham-operated mice were used as a control. Renal function was investigated on days 0, 1, 3, and 6 post-surgery using dynamic planar imaging of 99mTc-MAG3 activity following retro-orbital injection. Time-activity curves (TACs) were produced for individual kidneys and renal function was assessed by 1) the slope of initial 99mTc-MAG3 uptake (SIU), which is related to renal perfusion; 2) peak activity; and 3) the time-to-peak (TTP). The parameters of tubular excretion were not evaluated in this study as 99mTc-MAG3 is not excreted from UUO kidneys. RESULTS: Compared to sham-operated mice, SIU was remarkably (>60%) reduced in UUO kidneys at day 1 post surgery and the TACs plateaued, indicating that 99mTc-MAG3 is not excreted in these kidneys. The plateau activity in UUO kidneys was relatively low (~40% of sham kidney's peak activity) as early as day1 post surgery, demonstrating that uptake of 99mTc-MAG3 is rapidly reduced in UUO kidneys. The time to plateau in UUO kidneys exceeded 200 sec, suggesting that 99mTc-MAG3 is slowly up-taken in these kidneys. These changes advanced as the disease progressed. SIU, peak activity and TTPs were minimally changed in contra-lateral kidneys during the study period. CONCLUSIONS: Our data demonstrate that renal uptake of 99mTc-MAG3 is remarkably and rapidly reduced in UUO kidneys, while the changes are minimal in contra-lateral kidneys. The parametric analysis of TACs suggested that renal perfusion as well as tubular uptake is reduced in UUO kidneys. This imaging technique should allow non-invasive assessments of UUO renal injury and enable a more rapid interrogation of novel therapeutic agents and protocols.
    BMC Nephrology 12/2012; 13(1):168. · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin initiates diverse hepatic metabolic responses, including gluconeogenic suppression and induction of glycogen synthesis and lipogenesis. The liver possesses a rich sinusoidal capillary network with a higher degree of hypoxia and lower gluconeogenesis in the perivenous zone as compared to the rest of the organ. Here, we show that diverse vascular endothelial growth factor (VEGF) inhibitors improved glucose tolerance in nondiabetic C57BL/6 and diabetic db/db mice, potentiating hepatic insulin signaling with lower gluconeogenic gene expression, higher glycogen storage and suppressed hepatic glucose production. VEGF inhibition induced hepatic hypoxia through sinusoidal vascular regression and sensitized liver insulin signaling through hypoxia-inducible factor-2α (Hif-2α, encoded by Epas1) stabilization. Notably, liver-specific constitutive activation of HIF-2α, but not HIF-1α, was sufficient to augment hepatic insulin signaling through direct and indirect induction of insulin receptor substrate-2 (Irs2), an essential insulin receptor adaptor protein. Further, liver Irs2 was both necessary and sufficient to mediate Hif-2α and Vegf inhibition effects on glucose tolerance and hepatic insulin signaling. These results demonstrate an unsuspected intersection between Hif-2α-mediated hypoxic signaling and hepatic insulin action through Irs2 induction, which can be co-opted by Vegf inhibitors to modulate glucose metabolism. These studies also indicate distinct roles in hepatic metabolism for Hif-1α, which promotes glycolysis, and Hif-2α, which suppresses gluconeogenesis, and suggest new treatment approaches for type 2 diabetes mellitus.
    Nature medicine 09/2013; · 27.14 Impact Factor

Full-text (2 Sources)

View
31 Downloads
Available from
May 22, 2014