Analyses of Expressed Sequence Tags from Chironomus riparius Using Pyrosequencing : Molecular Ecotoxicology Perspective

School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul, Korea.
Environmental health and toxicology 08/2011; 26:e2011010. DOI: 10.5620/eht.2011.26.e2011010
Source: PubMed


Chironomus riparius, a non-biting midge (Chironomidae, Diptera), is extensively used as a model organism in aquatic ecotoxicological studies, and considering the potential of C. riparius larvae as a bio-monitoring species, little is known about its genome sequences. This study reports the results of an Expressed Sequence Tags (ESTs) sequencing project conducted on C. riparius larvae using 454 pyrosequencing.
To gain a better understanding of C. riparius transcriptome, we generated ESTs database of C. ripairus using pyrosequencing method.
Sequencing runs, using normalized cDNA collections from fourth instar larvae, yielded 20,020 expressed sequence tags, which were assembled into 8,565 contigs and 11,455 singletons. Sequence analysis was performed by BlastX search against the National Center for Biotechnology Information (NCBI) nucleotide (nr) and uniprot protein database. Based on the gene ontology classifications, 24% (E-value ≤1(-5)) of the sequences had known gene functions, 24% had unknown functions and 52% of sequences did not match any known sequences in the existing database. Sequence comparison revealed 81% of the genes have homologous genes among other insects belonging to the order Diptera providing tools for comparative genome analyses. Targeted searches using these annotations identified genes associated with essential metabolic pathways, signaling pathways, detoxification of toxic metabolites and stress response genes of ecotoxicological interest.
The results obtained from this study would eventually make ecotoxicogenomics possible in a truly environmentally relevant species, such as, C. riparius.

Download full-text


Available from: Prakash M Gopalakrishnan Nair, Oct 06, 2015
30 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: We characterized thioredoxin reductase 1 (TrxR1) from Chironomus riparius (CrTrxR1) and studied its expression under oxidative stress. The full-length cDNA is 1820bp long and contains an open reading frame (ORF) of 1488bp. The deduced CrTrxR1 protein has 495 amino acids and a calculated molecular mass of 54.41kDa and an isoelectric point of 6.15. There was a 71bp 5' and a 261bp 3' untranslated region with a polyadenylation signal site (AATAAA). Homologous alignments showed the presence of conserved catalytic domain Cys-Val-Asn-Val-Gly-Cys (CVNVGC), the C-terminal amino acids 'CCS' and conserved amino acids required in catalysis. The expression of CrTrxR1 is measured using quantitative real-time PCR after exposure to 50 and 100mg/L of paraquat (PQ) and 2, 10 and 20mg/L of cadmium chloride (Cd). CrTrxR1 mRNA was upregulated after PQ exposure at all conditions tested. The highest level of CrTrxR1 expression was observed after exposure to 10mg/L of Cd for 24h followed by 20mg/L for 48h. Significant downregulation of CrTrxR1 was observed after exposure to 10 and 20mg/L of Cd for 72h. This study shows that the CrTrxR1 could be potentially used as a biomarker of oxidative stress inducing environmental contaminants.
    Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 10/2011; 161(2):134-9. DOI:10.1016/j.cbpb.2011.10.007 · 1.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We identified and characterized a partial cDNA of StAR-related lipid transfer domain containing protein gene from Chironomus riparius (CrSTART1) having homology with human MLN64 and Drosophila melanogaster START1 (DmSTART1) and evaluated the effects of cadmium chloride (Cd) and nonylphenol (NP) on its expression. Pfam analysis identified the presence of two StAR-related lipid transfer (START) domains in CrSTART1 having several conserved amino acid residues, characteristic of the MLN64 and DmSTART1. The mRNA expression of CrSTART1 was observed in all developmental stages. The modulation in the mRNA expression of CrSTART1 was investigated after exposure to different concentrations Cd (0, 2, 10, and 20 mg/L) and NP (0, 10, 50, and 100 μg/L) for different time intervals in fourth instar larvae of C. riparius. Significant downregulation of CrSTART1 mRNA was observed after exposure to 2, 10 and 20 mg/L of Cd for 24, 48 and 72 h. Significant upregulation of CrSTART1 was observed after exposure to 10 and 50 μg/L of NP for 24, and 48 h period. At 100 μg/L of NP significant upregulation of CrSTART1 was observed after 12 h and downregulated after 24, 48 and 72 h.
    Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 10/2011; 155(2):369-74. DOI:10.1016/j.cbpc.2011.10.007 · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Superoxide dismutase (SOD, EC is an enzyme involved in the scavenging of reactive oxygen species (ROS) into molecular oxygen and hydrogen peroxide. In this study, a copper-zinc superoxide dismutase (Cu-ZnSOD) gene and a manganese superoxide dismutase (MnSOD) gene in aquatic midge, Chironomus riparius (CrSODs) was identified using an Expressed Sequence Tag (EST) database generated by 454 pyrosequencing. A multiple sequence alignment of C. riparius sequences revealed high homology with other insect sequences in terms of the amino acid level. Phylogenetic analysis of the CrSODs revealed that they were grouped with SODs of other organisms, such as Polypedilum vanderplanki, Drosophila melanogaster, Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus and Bombyx mori. Expression of the corresponding CrSODs was analyzed during different developmental stages and following exposure to various environmental contaminants with different mode of actions i.e., paraquat, cadmium, benzo[a]pyrene, and chloropyrifos. CrSOD gene expression was significantly up or down regulated in response to exposure to the chemicals tested. The overall results suggested that SOD gene expression provided a platform for the understanding of oxidative stress responses caused by exposure to various environmental contaminants, and the SOD genes could be used as biomarkers for environmental disturbances such as oxidative stress initiated by xenobiotics.
    Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 06/2012; 156(3-4):187-94. DOI:10.1016/j.cbpc.2012.06.003 · 2.30 Impact Factor
Show more