Intestinal Subepithelial Myofibroblasts Support in vitro and in vivo Growth of Human Small Intestinal Epithelium

Division of Gastroenterology and Nutrition, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America.
PLoS ONE (Impact Factor: 3.23). 11/2011; 6(11):e26898. DOI: 10.1371/journal.pone.0026898
Source: PubMed


The intestinal crypt-niche interaction is thought to be essential to the function, maintenance, and proliferation of progenitor stem cells found at the bases of intestinal crypts. These stem cells are constantly renewing the intestinal epithelium by sending differentiated cells from the base of the crypts of Lieberkühn to the villus tips where they slough off into the intestinal lumen. The intestinal niche consists of various cell types, extracellular matrix, and growth factors and surrounds the intestinal progenitor cells. There have recently been advances in the understanding of the interactions that regulate the behavior of the intestinal epithelium and there is great interest in methods for isolating and expanding viable intestinal epithelium. However, there is no method to maintain primary human small intestinal epithelium in culture over a prolonged period of time. Similarly no method has been published that describes isolation and support of human intestinal epithelium in an in vivo model. We describe a technique to isolate and maintain human small intestinal epithelium in vitro from surgical specimens. We also describe a novel method to maintain human intestinal epithelium subcutaneously in a mouse model for a prolonged period of time. Our methods require various growth factors and the intimate interaction between intestinal sub-epithelial myofibroblasts (ISEMFs) and the intestinal epithelial cells to support the epithelial in vitro and in vivo growth. Absence of these myofibroblasts precluded successful maintenance of epithelial cell formation and proliferation beyond just a few days, even in the presence of supportive growth factors. We believe that the methods described here can be used to explore the molecular basis of human intestinal stem cell support, maintenance, and growth.

Download full-text


Available from: Nan Ye Lei,
34 Reads
  • Source
    • "Small intestinal enterospheres were successfully sub-cultured through 12 passages in the presence of ISEMF-conditioned medium. This work builds upon and highlights the key role that ISEMFs play in the in vitro intestinal epithelial stem cell niche [4], [16], [17]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: We previously reported in vitro maintenance and proliferation of human small intestinal epithelium using Matrigel, a proprietary basement membrane product. There are concerns over the applicability of Matrigel-based methods for future human therapies. We investigated type I collagen as an alternative for the culture of human intestinal epithelial cells. Methods: Human small intestine was procured from fresh surgical pathology specimens. Small intestinal crypts were isolated using EDTA chelation. Intestinal subepithelial myofibroblasts were isolated from a pediatric sample and expanded in vitro. After suspension in Matrigel or type I collagen gel, crypts were co-cultured above a confluent layer of myofibroblasts. Crypts were also grown in monoculture with exposure to myofibroblast conditioned media; these were subsequently sub-cultured in vitro and expanded with a 1∶2 split ratio. Cultures were assessed with light microscopy, RT-PCR, histology, and immunohistochemistry. Results: Collagen supported viable human epithelium in vitro for at least one month in primary culture. Sub-cultured epithelium expanded through 12 passages over 60 days. Histologic sections revealed polarized columnar cells, with apical brush borders and basolaterally located nuclei. Collagen-based cultures gave rise to monolayer epithelial sheets at the gel-liquid interface, which were not observed with Matrigel. Immunohistochemical staining identified markers of differentiated intestinal epithelium and myofibroblasts. RT-PCR demonstrated expression of α-smooth muscle actin and vimentin in myofibroblasts and E-Cadherin, CDX2, villin 1, intestinal alkaline phosphatase, chromogranin A, lysozyme, and Lgr5 in epithelial cells. These markers were maintained through several passages. Conclusion: Type I collagen gel supports long-term in vitro maintenance and expansion of fully elaborated human intestinal epithelium. Collagen-based methods yield familiar enteroid structures as well as a new pattern of sheet-like growth, and they eliminate the need for Matrigel for in vitro human intestinal epithelial growth. Future research is required to further develop this cell culture system for tissue engineering applications.
    PLoS ONE 09/2014; 9(9):e107814. DOI:10.1371/journal.pone.0107814 · 3.23 Impact Factor
  • Source
    • "However, partial (Bastide et al., 2007; Garabedian et al., 1997; Mori-Akiyama et al., 2007; Shroyer et al., 2005) or complete, irreversible (Durand et al., 2012; Kim et al., 2012) Paneth cell ablation preserves mouse-crypt homeostasis in vivo, suggesting extraepithelial Wnt sources. A likely mesenchymal source is the subepithelial myofibroblasts (SEMFs) that envelop intestinal crypts (Powell et al., 2011) and support intestinal epithelial growth ex vivo and in tissue xenografts, likely through Wnt secretion (Lahar et al., 2011). SEMFs and other subepithelial cells express several Wnts, including Wnt2b, Wnt4, and Wnt5a (Gregorieff et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signaling is a crucial aspect of the intestinal stem cell niche required for crypt cell proliferation and differentiation. Paneth cells or subepithelial myofibroblasts are leading candidate sources of the required Wnt ligands, but this has not been tested in vivo. To abolish Wnt-ligand secretion, we used Porcupine (Porcn) conditional-null mice crossed to strains expressing inducible Cre recombinase in the epithelium, including Paneth cells (Villin-Cre (ERT2) ); in smooth muscle, including subepithelial myofibroblasts (Myh11-Cre (ERT2) ); and simultaneously in both compartments. Elimination of Wnt secretion from any of these compartments did not disrupt tissue morphology, cell proliferation, differentiation, or Wnt pathway activity. Thus, Wnt-ligand secretion from these cell populations is dispensable for intestinal homeostasis, revealing that a minor cell type or significant and unexpected redundancy is responsible for physiologic Wnt signaling in vivo.
    Stem Cell Reports 02/2014; 2(2):127-34. DOI:10.1016/j.stemcr.2013.12.012 · 5.37 Impact Factor
  • Source
    • "Our prior in vitro data on human tissues revealed that ISEMFs from an infant were supportive of long-term epithelial growth, whereas ISEMFs from adults were non-supportive [7]. This observation motivated our efforts to isolate non-supportive ISEMFs from an adult mouse, in order to further elucidate the neonatal ISEMF support mechanism. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal epithelial stem cells (ISCs) are the focus of recent intense study. Current in vitro models rely on supplementation with the Wnt agonist R-spondin1 to support robust growth, ISC self-renewal, and differentiation. Intestinal subepithelial myofibroblasts (ISEMFs) are important supportive cells within the ISC niche. We hypothesized that co-culture with ISEMF enhances the growth of ISCs in vitro and allows for their successful in vivo implantation and engraftment. ISC-containing small intestinal crypts, FACS-sorted single ISCs, and ISEMFs were procured from C57BL/6 mice. Crypts and single ISCs were grown in vitro into enteroids, in the presence or absence of ISEMFs. ISEMFs enhanced the growth of intestinal epithelium in vitro in a proximity-dependent fashion, with co-cultures giving rise to larger enteroids than monocultures. Co-culture of ISCs with supportive ISEMFs relinquished the requirement of exogenous R-spondin1 to sustain long-term growth and differentiation of ISCs. Mono- and co-cultures were implanted subcutaneously in syngeneic mice. Co-culture with ISEMFs proved necessary for successful in vivo engraftment and proliferation of enteroids; implants without ISEMFs did not survive. ISEMF whole transcriptome sequencing and qPCR demonstrated high expression of specific R-spondins, well-described Wnt agonists that supports ISC growth. Specific non-supportive ISEMF populations had reduced expression of R-spondins. The addition of ISEMFs in intestinal epithelial culture therefore recapitulates a critical element of the intestinal stem cell niche and allows for its experimental interrogation and biodesign-driven manipulation.
    PLoS ONE 01/2014; 9(1):e84651. DOI:10.1371/journal.pone.0084651 · 3.23 Impact Factor
Show more