Article

Genetic reduction of muscarinic M-4 receptor modulates analgesic response and acoustic startle response in a mouse model of fragile X syndrome (FXS)

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
Behavioural brain research (Impact Factor: 3.39). 11/2011; 228(1):1-8. DOI: 10.1016/j.bbr.2011.11.018
Source: PubMed

ABSTRACT The G-protein coupled muscarinic acetylcholine receptors, widely expressed in the CNS, have been implicated in fragile X syndrome (FXS). Recent studies have reported an overactive signaling through the muscarinic receptors in the Fmr1KO mouse model. Hence, it was hypothesized that reducing muscarinic signaling might modulate behavioral phenotypes in the Fmr1KO mice. Pharmacological studies from our lab have provided evidence for this hypothesis, with subtype-preferring muscarinic M1 and M4 receptor antagonists modulating select behaviors in the Fmr1KO mice. Since the pharmacological antagonists were not highly specific, we investigated the specific role of M4 receptors in the Fmr1KO mouse model, using a genetic approach.
We created a double mutant heterozygous for the M4 receptor gene and hemizygous for the Fmr1 gene and examined the mutants on various behaviors. Each animal was tested on a behavior battery comprising of open-field activity (activity), light-dark (anxiety), marble burying (perseverative behavior), prepulse inhibition (sensorimotor gating), rotarod (motor coordination), passive avoidance (learning and memory) and hotplate (analgesia). Animals were also tested on the audiogenic seizure protocol and testis weights were measured.
Reduction of M4 receptor expression in the heterozygotes completely rescued the analgesic response and partly rescued the acoustic startle response phenotype in the Fmr1KO mice. However, no modulation was observed in a number of behaviors including learning and memory, activity, perseverative behavior and audiogenic seizures.
Reducing M4 receptor signaling altered only select behavioral phenotypes in the Fmr1KO mouse model, suggesting that other targets are involved in the modulation of fragile X behaviors.

0 Followers
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and autism spectrum disorder. Caused by a silenced fragile X mental retardation 1 gene and the subsequent deficiency in fragile X mental retardation protein, patients with FXS experience a range of physical, behavioral, and intellectual debilitations. The FXS field, as a whole, has recently met with some challenges, as several targeted clinical trials with high expectations of success have failed to elucidate significant improvements in a variety of symptom domains. As new clinical trials in FXS are planned, there has been much discussion about the use of the commonly used clinical outcome measures, as well as study design considerations, patient stratification, and optimal age range for treatment. The evidence that modification of these drug targets and use of these failed compounds would prove to be efficacious in human clinical study were rooted in years of basic and translational research. There are questions arising as to the use of the mouse models for studying FXS treatment development. This issue is twofold: many of the symptom domains and molecular and biochemical changes assessed and indicative of efficacy in mouse model study are not easily amenable to clinical trials in people with FXS because of the intolerability of the testing paradigm or a lack of noninvasive techniques (prepulse inhibition, sensory hypersensitivity, startle reactivity, or electrophysiologic, biochemical, or structural changes in the brain); and capturing subtle yet meaningful changes in symptom domains such as sociability, anxiety, and hyperactivity in human FXS clinical trials is challenging with the currently used measures (typically parent/caregiver rating scales). Clinicians, researchers, and the pharmaceutical industry have all had to take a step back and critically evaluate the way we think about how to best optimize future investigations into pharmacologic FXS treatments. As new clinical trials are coming down the drug discovery pipeline, it is clear that the field is moving in a direction that values the development of molecular biomarkers, less subjective quantitative measures of symptom improvement, and rating scales developed specifically for use in FXS in conjunction with drug safety. While summarizing preclinical evidence, where applicable, and discussing challenges in FXS treatment development, this review details both completed clinical trials for the targeted and symptomatic treatment of FXS and introduces novel projects on the cusp of clinical trial investigation.
    The Application of Clinical Genetics 01/2015; 8. DOI:10.2147/TACG.S35673
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome (FXS), an inherited intellectual disability often associated with autism, is caused by the loss of expression of the fragile X mental retardation protein. Tremendous progress in basic, preclinical, and translational clinical research has elucidated a variety of molecular-, cellular-, and system-level defects in FXS. This has led to the development of several promising therapeutic strategies, some of which have been tested in larger-scale controlled clinical trials. Here, we will summarize recent advances in understanding molecular functions of fragile X mental retardation protein beyond the well-known role as an mRNA-binding protein, and will describe current developments and emerging limitations in the use of the FXS mouse model as a preclinical tool to identify therapeutic targets. We will review the results of recent clinical trials conducted in FXS that were based on some of the preclinical findings, and discuss how the observed outcomes and obstacles will inform future therapy development in FXS and other autism spectrum disorders.
    Journal of the American Society for Experimental NeuroTherapeutics 05/2015; DOI:10.1007/s13311-015-0355-9 · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous research indicates that the GABAAergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABAAergic deficits has remained largely unknown. Here, we demonstrate reduced mRNA expression of GABAA receptor subunits in the cortex and cerebellum of young Fmr1 knockout mice. In addition, we show that the previously reported underexpression of specific subunits of the GABAA receptor can be corrected in YAC transgenic rescue mice, containing the full-length human FMR1 gene in an Fmr1 knockout background. Moreover, we demonstrate that FMRP directly binds several GABAA receptor mRNAs. Finally, positive allosteric modulation of GABAA receptors with the neurosteroid ganaxolone can modulate specific behaviours in Fmr1 knockout mice, emphasizing the therapeutic potential of the receptor.
    Cell cycle (Georgetown, Tex.) 03/2015; DOI:10.4161/15384101.2014.989114 · 5.01 Impact Factor

Similar Publications