MTOR signaling regulates the processing of pre-rRNA in human cells. Nucleic Acids Res

School of Biological Sciences, University of Southampton, SO17 1BJ, UK.
Nucleic Acids Research (Impact Factor: 9.11). 11/2011; 40(6):2527-39. DOI: 10.1093/nar/gkr1040
Source: PubMed


Signaling through the mammalian target of rapamycin, complex 1 (mTORC1), positively regulates the transcription of ribosomal RNA (rRNA) and the synthesis of ribosomal proteins, thereby promoting the complex process of ribosome biogenesis. The major rRNAs are transcribed as a single precursor, which must be processed to create the 5.8S, 18S and 28S rRNAs. We used a new non-radioactive labeling approach to study the effects of rapamycin, an inhibitor of mTORC1, on rRNA synthesis. Rapamycin not only impaired synthesis of new 18S, 28S or 5S rRNA but also induced their decay. This prompted us to examine the effects of rapamycin on rRNA processing. We show that rapamycin also interferes with the processing events that generate 18S and 28S rRNA. rRNA transcription and processing occur in regions of the nucleus known as nucleoli. We find that the mTORC1 components raptor and mTOR are both present in nucleoli, where they may regulate rRNA maturation events. While rapamycin has no effect on overall nucleolar morphology or its proteome, it does induce loss of mTOR and raptor from them. These data show that mTORC1 is located in nucleoli where it acts to regulate events involved in ribosome biogenesis including the maturation of rRNA molecules.

39 Reads
  • Source
    • "As S6K1 has been shown to positively regulate rRNA transcription [reviewed in (9)], this could constitute a ‘rescue’ mechanism to promote rRNA synthesis in response to inadequate ribosome production. To study rRNA synthesis, we used a non-radioactive labelling method [whereby new rRNA is tagged with 4-thiouracil, 4SU (7)]. The data (Figure 1F) reveal a decrease in the accumulation of new labelled rRNA in cells expressing BOP1Δ perhaps because impairing rRNA processing destabilizes new rRNA, in an analogous way to the effect of rapamycin, which also interferes with processing (7). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribosome biogenesis is a key process for maintaining protein synthetic capacity in dividing or growing cells, and requires coordinated production of ribosomal proteins and ribosomal RNA (rRNA), including the processing of the latter. Signalling through mammalian target of rapamycin complex 1 (mTORC1) activates all these processes. Here, we show that, in human cells, impaired rRNA processing, caused by expressing an interfering mutant of BOP1 or by knocking down components of the PeBoW complex elicits activation of mTORC1 signalling. This leads to enhanced phosphorylation of its substrates S6K1 and 4E-BP1, and stimulation of proteins involved in translation initiation and elongation. In particular, we observe both inactivation and downregulation of the eukaryotic elongation factor 2 kinase, which normally inhibits translation elongation. The latter effect involves decreased expression of the eEF2K mRNA. The mRNAs for ribosomal proteins, whose translation is positively regulated by mTORC1 signalling, also remain associated with ribosomes. Therefore, our data demonstrate that disrupting rRNA production activates mTORC1 signalling to enhance the efficiency of the translational machinery, likely to help compensate for impaired ribosome production.
    Nucleic Acids Research 02/2014; 42(8). DOI:10.1093/nar/gku130 · 9.11 Impact Factor
  • Source
    • "Ribosome biogenesis is critical for protein synthesis during cell growth and proliferation [40]. In mesothelioma, inhibition of this pathway has been shown to inhibit cell invasion, motility and spreading [40]. Whether overexpression of SNHG7 contributes to altered ribosomal biogenesis and ultimately cell growth and proliferation remains to be determined, but it is interesting to note that we found this gene to be associated with nodal metastasis, suggesting it may be potentially useful as a prognostic marker. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant Pleural Mesothelioma (MPM) is an aggressive cancer that is often diagnosed at an advanced stage and is characterized by a long latency period (20-40 years between initial exposure and diagnosis) and prior exposure to asbestos. Currently accurate diagnosis of MPM is difficult due to the lack of sensitive biomarkers and despite minor improvements in treatment, median survival rates do not exceed 12 months. Accumulating evidence suggests that aberrant expression of long non-coding RNAs (lncRNAs) play an important functional role in cancer biology. LncRNAs are a class of recently discovered non-protein coding RNAs >200 nucleotides in length with a role in regulating transcription. Here we used NCode long noncoding microarrays to identify differentially expressed lncRNAs potentially involved in MPM pathogenesis. High priority candidate lncRNAs were selected on the basis of statistical (P<0.05) and biological significance (>3-fold difference). Expression levels of 9 candidate lncRNAs were technically validated using RT-qPCR, and biologically validated in three independent test sets: (1) 57 archived MPM tissues obtained from extrapleural pneumonectomy patients, (2) 15 cryopreserved MPM and 3 benign pleura, and (3) an extended panel of 10 MPM cell lines. RT-qPCR analysis demonstrated consistent up-regulation of these lncRNAs in independent datasets. ROC curve analysis showed that two candidates were able to separate benign pleura and MPM with high sensitivity and specificity, and were associated with nodal metastases and survival following induction chemotherapy. These results suggest that lncRNAs have potential to serve as biomarkers in MPM.
    PLoS ONE 08/2013; 8(8):e70940. DOI:10.1371/journal.pone.0070940 · 3.23 Impact Factor
  • Source
    • "synthesis of ribosomal proteins in mouse myoblasts [14] by increasing the number of ribosomes [15] while rapamycin, a TORkinase inhibitor, blocks the rRNA precursors processing in HeLa cells [16]. There is still little knowledge about the regulation of ribosome synthesis in plants. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribosome biogenesis is a pre-requisite for cell growth and proliferation; it is however, a highly regulated process that consumes a great quantity of energy. It requires the coordinated production of rRNA, ribosomal proteins and non-ribosomal factors which participate in the processing and mobilization of the new ribosomes. Ribosome biogenesis has been studied in yeast and animals; however, there is little information about this process in plants. The objective of the present work was to study ribosome biogenesis in maize seeds during germination, a stage characterized for its fast growth, and the effect of insulin in this process. Insulin has been reported to accelerate germination and to induce seedling growth. It was observed that among the first events reactivated just after 3 hours of imbibition are the rDNA transcription and the pre-rRNA processing and that insulin stimulates both of them (40-230%). The transcript of nucleolin, a protein which regulates rDNA transcription and pre-rRNA processing, is among the messages stored in quiescent dry seeds and it is mobilized into the polysomal fraction during the first hours of imbibition (6h). In contrast, de novo ribosomal protein synthesis was low during the first hours of imbibition (3 and 6 h) increasing by 60 times in later stages (24 h). Insulin increased this synthesis (75%) at 24 h of imbibition; however, not all ribosomal proteins were similarly regulated. In this regard, an increase in RPS6 and RPL7 protein levels was observed, whereas RPL3 protein levels did not change even though its transcription was induced. Results show that ribosome biogenesis in the first stages of imbibition is carried out with newly synthesized rRNA and ribosomal proteins translated from stored mRNA.
    Biochimie 06/2013; 95(10). DOI:10.1016/j.biochi.2013.06.011 · 2.96 Impact Factor
Show more