Assessment of perfluorinated compounds (PFCs) in plasma of bottlenose dolphins from two southeast US estuarine areas: Relationship with age, sex and geographic locations

National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health & Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412-9110, USA.
Marine Pollution Bulletin (Impact Factor: 2.99). 11/2011; 64(1):66-74. DOI: 10.1016/j.marpolbul.2011.10.022
Source: PubMed


Plasma PFCs were measured in 157 bottlenose dolphins (Tursiops truncatus) sampled from two US southeast Atlantic sites (Charleston (CHS), SC and Indian River Lagoon (IRL), FL) during 2003-2005. ∑PFCs, perfluoroalkyl carboxylates (∑PFCAs), perfluoroalkyl sulfonates (∑PFSAs) and individual compounds were significantly higher in CHS dolphins for all age/sex categories compared to IRL dolphins. Highest ∑PFCs concentrations occurred in CHS juvenile dolphins (2340 ng/g w.w.); significantly higher than found in adults (1570 ng/g w.w. males; 1330 ng/g w.w. females). ∑PFCAs were much greater in CHS dolphins (≈ 21%) compared to IRL dolphins (≈ 7%); ∑PFSAs were 79% in CHS dolphins versus 93% in IRL dolphins. PFOS, the dominant compound, averaged 72% and 84%, respectively, in CHS and IRL dolphins. Decreasing PFC levels occurred with age on the bioaccumulation of PFCs in both sites. These observations suggest PFC accumulation in these two dolphin populations are influenced by site-specific exposures with significantly higher levels in CHS dolphins.

Download full-text


Available from: Magali Houde,
63 Reads
  • Source
    • "PFAS are ubiquitous in river water, oceans, sediment, soil, and tissues of wildlife and humans (Ahrens et al., 2010a; Higgins et al., 2005;Wang et al., 2013; Giesy and Kannan, 2001; Bao et al., 2010a; Kannan et al., 2001, 2002a,b). They are potentially harmful to fresh water and marine mammals (Ishibashi et al., 2008) and have potential adverse effects in wildlife species (Hoff et al., 2005; Fair et al., 2012; Beach et al., 2005; Newsted et al., 2005, 2008; Giesy et al., 2009). Sediment is an important sink and reservoir of persistent organic pollutants and has a large impact on their distribution, transportation, and fate in the aquatic environment (Ahrens et al., 2009; Yang et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the concentrations and distribution of Perfluoroalkyl and polyfluoroalkyl substances (PFAS) in sediments of 12 rivers from South Bohai coastal watersheds. The highest concentrations of ΣPFAS (31.920ngg(-)(1)dw) and PFOA (29.021ngg(-)(1)dw) were found in sediments from the Xiaoqing River, which was indicative of local point sources in this region. As for other rivers, concentrations of ΣPFAS ranged from 0.218 to 1.583ngg(-)(1)dw were found in the coastal sediments and from 0.167 to 1.953ngg(-)(1)dw in the riverine sediments. Predominant PFAS from coastal and riverine areas were PFOA and PFBS, with percentages of 30% and 35%, respectively. Partitioning analysis showed the concentrations of PFNA, PFDA and PFHxS were significantly correlated with organic carbon. The results of a preliminary environmental hazard assessment showed that PFOS posed the highest hazard in the Mi River, while PFOA posed a relative higher hazard in the Xiaoqing River.
    Marine Pollution Bulletin 01/2014; 85(2). DOI:10.1016/j.marpolbul.2013.12.042 · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Concentrations of Dechlorane (Dec) 603 (0.75 ng/g lipid weight (lw); mean) and Dec 602 (0.38 ng/g lw; mean) were quantified in more than 95% of the franciscana (Pontoporia blainvillei) dolphin samples, whereas the frequency of detection decreased to 75% for Dechlorane Plus (DP) (1.53 ng/g lw, mean). The presence of Chlordene Plus (CP) was also observed (0.13 ng/g lw, mean) in half of the samples. On the contrary, Dec 604, decachloropentacyclooctadecadiene (aCl(10)DP), and undecachloropentacyclooctadecadiene (aCl(11)DP) concentrations were below the limit of quantifications in all cases. To the best of our knowledge, this is the first article reporting the presence of Dec 603, Dec 602, and CP in mammals. For comparative purposes, levels of Mirex, polybrominated diphenyl ethers (PBDEs), and decabromodiphenylethane (DBDPE) are also reported. Considering geographic distribution evaluation together with the strong positive correlations found between DP and PBDEs (r(s) = 0.63; p < 0.01), highly anthropogenic areas were identified as potential sources of these chemicals in this dolphin species. However, local sources for Dec 602, 603, Mirex, CP, and DBDPE were not found indicating that in this case historical use and/or atmospheric transport and deposition may play an important role in their fate.
    Environmental Science & Technology 09/2012; 46(22). DOI:10.1021/es302934p · 5.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the effect of five types of carbonaceous materials (CMs) in sediment on bioaccumulation of perfluorochemicals (PFCs) by Chironomus plumosus larvae. The CMs included two multi-walled carbon nanotubes (MWCNT10 and MWCNT50), maize straw- and willow-derived chars, and maize straw-origin ash. The PFCs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA). The CMs with different concentrations (0-1.5% dry weight) were amended into sediments spiked with PFCs and aged for 60 d. The uptake rate constants (ks) for each PFC to larvae differed with different CM amendments (p<0.05), while elimination rate did not change significantly (p>0.05). Decreasing PFC concentration in larvae (CB) was found with increasing CM concentration (fCM) in the sediments, and a linear positive correlation existed between 1/CB and fCM (p<0.05). The effect of CMs on PFC bioaccumulation agreed well with the CM properties; MWCNT10 with the highest specific surface area resulted in the lowest ks values and biota-sediment accumulation factors (BSAF), with a BSAF reduction of 66%-97% by a 1.5% amendment. The mechanism was explored by analyzing the aqueous phase concentrations of PFCs and the sorption of PFCs on sediments amended with CMs. The results suggested that the decreasing trend of PFCs in larvae was caused by the decreasing aqueous phase concentration with increasing CM concentration. In the studied conditions with low PFC concentrations, the bioaccumulation of PFCs was a linear partitioning between pore water and biota, and the sorption of PFCs to the sediment/CM mixtures was a two domain linear distribution. This study suggests that both the type and concentration of carbonaceous materials in sediment can affect the bioaccumulation of PFCs to benthic organisms through changing their aqueous phase concentrations.
    Environmental Science & Technology 11/2012; 46(22). DOI:10.1021/es303024x · 5.33 Impact Factor
Show more