NONO and RALY proteins are required for YB-1 oxaliplatin induced resistance in colon adenocarcinoma cell lines

Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec, G1R 2J6, Canada.
Molecular Cancer (Impact Factor: 4.26). 11/2011; 10(1):145. DOI: 10.1186/1476-4598-10-145
Source: PubMed

ABSTRACT YB-1 is a multifunctional protein that affects transcription, splicing, and translation. Overexpression of YB-1 in breast cancers causes cisplatin resistance. Recent data have shown that YB-1 is also overexpress in colorectal cancer. In this study, we tested the hypothesis that YB-1 also confers oxaliplatin resistance in colorectal adenocarcinomas.
We show for the first time that transfection of YB-1 cDNA confers oxaliplatin resistance in two colorectal cancer cell lines (SW480 and HT29 cell lines). Furthermore, we identified by mass spectrometry analyses important YB-1 interactors required for such oxaliplatin resistance in these colorectal cancer cell lines. A tagged YB-1 construct was used to identify proteins interacting directly to YB-1 in such cells. We then focused on proteins that are potentially involved in colorectal cancer progression based on the Oncomine microarray database. Genes encoding for these YB-1 interactors were also examined in the public NCBI comparative genomic hybridization database to determine whether these genes are localized to regions of chromosomes rearranged in colorectal cancer tissues. From these analyses, we obtained a list of proteins interacting with YB-1 and potentially involved in oxaliplatin resistance. Oxaliplatin dose response curves of SW480 and HT29 colorectal cancer cell lines transfected with several siRNAs corresponding to each of these YB-1 interactors were obtained to identify proteins significantly affecting oxaliplatin sensitivity upon gene silencing. Only the depletion of either NONO or RALY sensitized both colorectal cancer cell lines to oxaliplatin. Furthermore, depletion of NONO or RALY sensitized otherwise oxaliplatin resistant overexpressing YB-1 SW480 or HT29 cells.
These results suggest knocking down NONO or RALY significant counteracts oxaliplatin resistance in colorectal cancers overexpressing the YB-1 protein.

54 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Messenger RNA-binding translational regulatory proteins determine in large part the spectrum of transcripts that are translated under specific cellular contexts. Y-box binding protein-1 (YB-1) is a conserved eukaryotic translational regulator that is implicated in cancer progression. To identify specific proteins that are translationally regulated by YB-1, we established a pulse-labelling approach combining Click chemistry and stable isotope labelling by amino acids in cell culture (SILAC). The proteome of TC32 human Ewing sarcoma cells, which robustly express YB-1, was compared with or without YB-1 siRNA knockdown. Cells labelled with light or heavy isotopologs of Arg and Lys were then cotranslationally pulsed with the methionine derivative, azidohomoalanine (AHA). Cells were lysed and newly synthesized proteins were selectively derivatized via a Click (3+2 cycloaddition) reaction to add an alkyne biotin tag. They were then affinity purified and subjected to liquid chromatography-tandem mass spectrometry. This combined Click-SILAC approach enabled us to catalog and quantify newly synthesized proteins regulated by YB-1 after only 45min of labelling. Bioinformatic analysis revealed that YB-1 regulated proteins are involved in diverse biological pathways. We anticipate that this Click-SILAC strategy will be useful for studying short-term protein synthesis in different cell culture systems and under diverse biological contexts.
    Journal of proteomics 09/2012; 77. DOI:10.1016/j.jprot.2012.08.019 · 3.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer (CRC) is one of the most common and fatal malignancies worldwide. Novel prognostic biomarkers are urgently warranted to help improve the treatment of CRC. Y-box-binding protein 1 (YB-1) has been identified as a multifunctional oncoprotein in various malignancies. Our previous study has suggested that YB-1 may promote malignant progression of CRC cells in vitro. However, its clinical and prognostic significance in CRC patients remains unclear. In this study, the expression of YB-1 was examined in 32 fresh CRC tissues using quantitative real-time polymerase chain reaction (qRT-PCR) and in 170 paraffin-embedded CRC tissues using immunohistochemistry. The result of qRT-PCR demonstrated mRNA expression of YB-1 was increased in 26 of 32 (81.25%) of CRC patients. The statistical analysis based on immunohistochemical staining suggested that YB-1 expression was significantly correlated with tumor differentiation, tumor invasion, lymph node metastasis and Dukes' classification (all P<0.05). Furthermore, we found that patients with high YB-1 expression had a poorer prognosis and were more likely to undergo local recurrence, compared to those with low YB-1 expression. We also identified that YB-1 expression, together with lymph node metastasis and Dukes' classification were independent prognostic factors for CRC patients. In conclusion, our study for the first time demonstrated the clinical and prognostic significance of YB-1 in CRC and suggested that YB-1 is of great potential to be an attractive therapeutic target as well as prognostic biomarker for CRC patients.
    International journal of clinical and experimental pathology 01/2014; 7(12):8715-23. · 1.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-binding proteins (RBPs) play important roles in cellular homeostasis by controlling gene expression at the post-transcriptional level. We explore the expression of more than 800 RBPs in sixteen healthy human tissues and their patterns of dysregulation in cancer genomes from The Cancer Genome Atlas project. We show that genes encoding RBPs are consistently and significantly highly expressed compared with other classes of genes, including those encoding regulatory components such as transcription factors, miRNAs and long non-coding RNAs. We also demonstrate that a set of RBPs, numbering approximately 30, are strongly upregulated (SUR) across at least two-thirds of the nine cancers profiled in this study. Analysis of the protein-protein interaction network properties for the SUR and non-SUR groups of RBPs suggests that path length distributions between SUR RBPs is significantly lower than those observed for non-SUR RBPs. We further find that the mean path lengths between SUR RBPs increases in proportion to their contribution to prognostic impact. We also note that RBPs exhibiting higher variability in the extent of dysregulation across breast cancer patients have a higher number of protein-protein interactions. We propose that fluctuating RBP levels might result in an increase in non-specific protein interactions, potentially leading to changes in the functional consequences of RBP binding. Finally, we show that the expression variation of a gene within a patient group is inversely correlated with prognostic impact. Overall, our results provide a roadmap for understanding the impact of RBPs on cancer pathogenesis.
    Genome biology 01/2014; 15(1):R14. DOI:10.1186/gb-2014-15-1-r14 · 10.81 Impact Factor
Show more