Article

Serotonergic modulation of receptor occupancy in rats treated with L-DOPA after unilateral 6-OHDA lesioning.

Center of Functionally Integrative Neuroscience, Aarhus University Hospitals, Aarhus University, Denmark.
Journal of Neurochemistry (Impact Factor: 3.97). 11/2011; 120(5):806-17. DOI: 10.1111/j.1471-4159.2011.07598.x
Source: PubMed

ABSTRACT Recent studies suggest that l-3,4 dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID), a severe complication of conventional L-DOPA therapy of Parkinson's disease, may be caused by dopamine (DA) release originating in serotonergic neurons. To evaluate the in vivo effect of a 5-HT(1A) agonist [(±)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide, 8-OHDPAT] on the L-DOPA-induced increase in extracellular DA and decrease in [(11) C]raclopride binding in an animal model of advanced Parkinson's disease and LID, we measured extracellular DA in response to L-DOPA or a combination of L-DOPA and the 5-HT(1A) agonist, 8-OHDPAT, with microdialysis, and determined [(11) C]raclopride binding to DA receptors, with micro-positron emission tomography, as the surrogate marker of DA release. Rats with unilateral 6-hydroxydopamine lesions had micro-positron emission tomography scans with [(11) C]raclopride at baseline and after two pharmacological challenges with L-DOPA + benserazide with or without 8-OHDPAT co-treatment. Identical challenge regimens were used with the subsequent microdialysis concomitant with ratings of LID severity. The baseline increase of [(11) C]raclopride-binding potential (BP(ND) ) in lesioned striatum was eliminated by the L-DOPA challenge, while the concurrent administration of 8-OHDPAT prevented this L-DOPA-induced displacement of [(11) C]raclopride significantly in lesioned ventral striatum and near significantly in the dorsal striatum. With microdialysis, the L-DOPA challenge raised the extracellular DA in parallel with the emergence of strong LID. Co-treatment with 8-OHDPAT significantly attenuated the release of extracellular DA and LID. The 8-OHDPAT co-treatment reversed the L-DOPA-induced decrease of [(11) C]raclopride binding and increase of extracellular DA and reduced the severity of LID. The reversal of the effect of L-DOPA on [(11) C]raclopride binding, extracellular DA and LID by 5-HT agonist administration is consistent with the notion that part of the DA increase associated with LID originates in serotonergic neurons.

0 Bookmarks
 · 
127 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 5-HT (5-hydroxytryptamine) system has been assigned a key role in the development of 3,4-dihydroxyphenyl-l-alanine (l-DOPA)-induced dyskinesia, mainly due to 5-HT neuronal ability to decarboxylate l-DOPA into dopamine. Nevertheless, knowledge of l-DOPA-induced events that could lead to development of dyskinesias are limited and therefore the present work has evaluated (i) the role of the 5-HT system in l-DOPA-derived dopamine synthesis when dopamine neurons are present, (ii) l-DOPA-induced effects on striatal dopamine release and clearance, and on 5-HT nerve fiber density, and (iii) the behavioral outcome of altered 5-HT transmission in dyskinetic rats. Chronoamperometric recordings demonstrated attenuated striatal l-DOPA-derived dopamine release (∼30%) upon removal of 5-HT nerve fibers in intact animals. Interestingly, four weeks of daily l-DOPA treatment yielded similar-sized dopamine peak amplitudes in intact animals as found after a 5-HT-lesion. Moreover, chronic l-DOPA exposure attenuated striatal 5-HT nerve fiber density in the absence of dopamine nerve terminals. Furthermore, fluoxetine-induced altered 5-HT transmission blocked dyskinetic behavior via action on 5-HT1A receptors. Taken together, the results indicate a central role for the 5-HT system in l-DOPA-derived dopamine synthesis and in dyskinesia, and therefore potential l-DOPA-induced deterioration of 5-HT function might reduce l-DOPA efficacy as well as promote the upcoming of motor side effects.
    Neuroscience 12/2013; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The serotonin system has recently emerged as an important player in the appearance of L-DOPA-induced dyskinesia (LID) in experimental models of Parkinson's disease, as it provides an unregulated source of L-DOPA-derived dopamine release in the dopamine-depleted striatum. Accordingly, toxin lesion or pharmacological silencing of serotonin neurons suppressed LID in the rat and monkey models of Parkinson's disease. However, 5-HT1 receptor agonists were also found to partially reduce the therapeutic effect of L-DOPA. In this study, we evaluated whether enhancement of the serotonin tone induced by the administration of the serotonin precursor 5-hydroxy-tryptophan (5-HTP) could affect induction and expression of LID, as well as the therapeutic effect of L-DOPA, in 6-OHDA-lesioned rats. Drug naïve and L-DOPA-primed 6-OHDA-lesioned rats were chronically treated with a daily injection of L-DOPA (6mg/kg plus benserazide, s.c.) alone, or in combination with 5-HTP (24-48mg/kg, i.p.). The abnormal involuntary movements (AIMs) test, as well as the stepping and the motor activity tests, were performed during the chronic treatments. Results showed that 5-HTP reduced the appearance of LID of about 50% at both tested doses. A partial reduction of the therapeutic effect of L-DOPA was seen with the higher but not with the lower dose of 5-HTP. 5-HTP 24mg/kg was also able to reduce the expression of dyskinesia in L-DOPA-primed dyskinetic rats, to a similar extent than in L-DOPA-primed rats. Importantly, the antidyskinetic effect of 5-HTP 24mg/kg does not appear to be due to a competition with L-DOPA for crossing the blood brain barrier; in fact, similar L-DOPA striatal levels were found in L-DOPA only and L-DOPA plus 5-HTP 24mg/kg treated animals. These data further confirm the involvement of the serotonin system in the appearance of LID, and suggest that 5-HTP may be useful to counteract the appearance of dyskinesia in Parkinson's disease patients.
    Neurobiology of Disease 09/2013; · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Levodopa-induced dyskinesias (LIDs) are the most common and disabling adverse motor effect of therapy in Parkinson's disease (PD) patients. In this study, we investigated serotonergic mechanisms in LIDs development in PD patients using 11C-DASB PET to evaluate serotonin terminal function and 11C-raclopride PET to evaluate dopamine release. PD patients with LIDs showed relative preservation of serotonergic terminals throughout their disease. Identical levodopa doses induced markedly higher striatal synaptic dopamine concentrations in PD patients with LIDs compared with PD patients with stable responses to levodopa. Oral administration of the serotonin receptor type 1A agonist buspirone prior to levodopa reduced levodopa-evoked striatal synaptic dopamine increases and attenuated LIDs. PD patients with LIDs that exhibited greater decreases in synaptic dopamine after buspirone pretreatment had higher levels of serotonergic terminal functional integrity. Buspirone-associated modulation of dopamine levels was greater in PD patients with mild LIDs compared with those with more severe LIDs. These findings indicate that striatal serotonergic terminals contribute to LIDs pathophysiology via aberrant processing of exogenous levodopa and release of dopamine as false neurotransmitter in the denervated striatum of PD patients with LIDs. Our results also support the development of selective serotonin receptor type 1A agonists for use as antidyskinetic agents in PD.
    The Journal of clinical investigation 02/2014; · 15.39 Impact Factor

Full-text (2 Sources)

View
4 Downloads
Available from
Sep 15, 2014