The effect of the thioether-bridged, stabilized Angiotensin-(1-7) analogue cyclic ang-(1-7) on cardiac remodeling and endothelial function in rats with myocardial infarction.

Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
International journal of hypertension 01/2012; 2012:536426. DOI:10.1155/2012/536426
Source: PubMed

ABSTRACT Modulation of renin-angiotensin system (RAS) by angiotensin-(1-7) (Ang-(1-7)) is an attractive approach to combat the detrimental consequences of myocardial infarction (MI). However Ang-(1-7) has limited clinical potential due to its unfavorable pharmacokinetic profile. We investigated effects of a stabilized, thioether-bridged analogue of Ang-(1-7) called cyclic Ang-(1-7) in rat model of myocardial infarction. Rats underwent coronary ligation or sham surgery. Two weeks thereafter infusion with 0.24 or 2.4 μg/kg/h cAng-(1-7) or saline was started for 8 weeks. Thereafter, cardiac morphometric and hemodynamic variables as wells as aortic endothelial function were measured. The average infarct size was 13.8% and was not changed by cAng-(1-7) treatment. MI increased heart weight and myocyte size, which was restored by cAng-(1-7) to sham levels. In addition, cAng-(1-7) lowered left ventricular end-diastolic pressure and improved endothelial function. The results suggest that cAng-(1-7) is a promising new agent in treatment of myocardial infarction and warrant further research.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: The counter-regulatory axis of the renin-angiotensin system (RAS) is a novel therapeutic target in cardiovascular disease. Pathophysiological effects mediated via angiotensin II (Ang II) are well established in regulation of blood pressure, cardiac and vascular remodeling, and renal sodium handling, which lead to disorders such as hypertension and associated end-organ damage, atherosclerosis and heart failure. The counter-regulatory axis of the RAS is centered on the angiotensin-converting enzyme 2/angiotensin-1-7 (Ang-[1-7])/Mas receptor axis and has been shown to inhibit many detrimental phenotypes in cardiovascular disease. More recently, an alternative peptide, angiotensin-(1-9) (Ang-[1-9]), has been reported as a potential new member of this axis. This review will discuss the cardiovascular regulatory roles of Ang-(1-7) and Ang-(1-9) in the counter-regulatory axis of the RAS, and the potential for new therapeutic approaches in cardiovascular disease.
    Future Cardiology 01/2013; 9(1):23-38.
  • [show abstract] [hide abstract]
    ABSTRACT: The renin–angiotensin system (RAS) has recently been extended by the addition of a novel axis consisting of the angiotensin-converting enzyme 2 (ACE2), the heptapeptide angiotensin (1–7) (Ang-(1–7)), and the G protein-coupled receptor Mas. ACE2 converts the vasoconstrictive and pro-oxidative peptide angiotensin II (Ang II) into Ang-(1–7) which exerts vasodilatory and antioxidative effects via its receptor Mas. Thereby, ACE2 regulates the local actions of the RAS in cardiovascular tissues and the ACE2/Ang-(1–7)/Mas axis exerts protective actions in hypertension, diabetes, and other cardiovascular disorders. Consequently, this novel RAS axis represents a promising therapeutic target for cardiovascular and metabolic diseases.
    Pflügers Archiv - European Journal of Physiology 01/2013; 465(1):79-85. · 4.87 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: It is well known that the renin-angiotensin system (RAS) plays a pivotal role in the pathophysiology of cardiovascular diseases. This is well illustrated by the great success of ACE inhibitors and angiotensin (Ang) II AT(1) blockers in the treatment of hypertension and its complications. In the past decade, the classical concept of RAS orchestrated by a series of enzymatic reactions culminating in the linear generation and action of Ang II has expanded and become more complex. From the discoveries of new components such as the angiotensin converting enzyme 2 and the receptor Mas emerged a novel concept of dual opposite branches of the RAS: one vasoconstrictor and pro-hypertensive composed of ACE/Ang II/AT1; and other vasodilator and anti-hypertensive composed of ACE2/Ang-(1-7)/Mas. In this review we will discuss recent findings concerning the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular system and highlight the initiatives to develop potential therapeutic strategies based on this axis for treating hypertension.
    Current Hypertension Reports 12/2012; · 3.74 Impact Factor

Full-text (5 Sources)

Available from
Mar 22, 2013