Article

Conjugation of Organoruthenium(II) 3-(1H-Benzimidazol-2-yl)pyrazolo[3,4-b]pyridines and Indolo[3,2-d]benzazepines to Recombinant Human Serum Albumin: a Strategy To Enhance Cytotoxicity in Cancer Cells

Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
Inorganic Chemistry (Impact Factor: 4.79). 11/2011; 50(24):12669-79. DOI: 10.1021/ic201801e
Source: PubMed

ABSTRACT Following our strategy of coupling cyclin-dependent kinase (Cdk) inhibitors with organometallic moieties to improve their physicochemical properties and bioavailability, five organoruthenium complexes (1c-5c) of the general formula [RuCl(η(6)-arene)(L)]Cl have been synthesized in which the arene is 4-formylphenoxyacetyl-η(6)-benzylamide and L is a Cdk inhibitor [3-(1H-benzimidazol-2-yl)-1H-pyrazolo[3,4-b]pyridines (L1-L3) and indolo[3,2-d]benzazepines (L4 and L5)]. All of the compounds were characterized by spectroscopic and analytical methods. Upon prolonged standing (2-3 months) at room temperature, the dimethyl sulfoxide (DMSO) solutions of 1c and 2c(-HCl) afforded residues, which after recrystallization from EtOH and EtOH/H(2)O, respectively, were shown by X-ray diffraction to be cis,cis-[Ru(II)Cl(2)(DMSO)(2)(L1)]·H(2)O and mer-[Ru(II)Cl(DMSO)(3)(L2-H)]·H(2)O. Compound 5c, with a coordinated amidine unit, undergoes E/Z isomerization in solution. The antiproliferative activities and effects on the cell cycle of the new compounds were evaluated. Complexes 1c-5c are moderately cytotoxic to cancer cells (CH1, SW480, A549, A2780, and A2780cisR cell lines). Therefore, in order to improve their antiproliferative effects, as well as their drug targeting and delivery to cancer cells, 1c-5c were conjugated to recombinant human serum albumin, potentially exploiting the so-called "enhanced permeability and retention" effect that results in the accumulation of macromolecules in tumors. Notably, a marked increase in cytotoxicity of the albumin conjugates was observed in all cases.

0 Followers
 · 
119 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Novel rhodium, iridium, and ruthenium half-sandwich complexes containing (N,N)-bound picolinamide ligands have been prepared for use as anticancer agents. The complexes show promising cytotoxicities, with the presence, position, and number of halides having a significant effect on the corresponding IC50 values. One ruthenium complex was found to be more cytotoxic than cisplatin on HT-29 and MCF-7 cells after 5 days and 1 h, respectively, and it remains active with MCF-7 cells even under hypoxic conditions, making it a promising candidate for in vivo studies.
    Inorganic Chemistry 01/2014; 53(2). DOI:10.1021/ic401529u · 4.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We use Schiff-base salicylaldehyde benzoylhydrazone (HL) as the ligand for Copper(II), resulting in the complexes [CuCl(L)] · H2O (C1), [CuNO3(L)] · H2O (C2) and [CuBr(L)]2 (C3). We characterize the Cu(II) compounds’ interactions with human serum albumin (HSA) using fluorescence spectroscopy and molecular docking. These studies revealed that Cu(II) compounds propensity bound to IIA subdomain of HSA possible by hydrophobic interactions and hydrogen bond. Cu(II) compounds produce intracellular reactive oxygen species (ROS) in cancer cells. Complexes of HSA and copper(II) compounds enhance about 2-fold cytotoxicity in cancer cells but do not raise cytotoxicity levels in normal cells in vitro. Compared with C3 alone, HSA–C3 complex promotes HepG2 cell apoptosis and has a stronger capacity to promote cell cycle arrest at the G2/M phase of HepG2.
    Journal of Inorganic Biochemistry 12/2014; 144. DOI:10.1016/j.jinorgbio.2014.12.012 · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ligands 2-pyridin-2-yl-1H-benzimidazole (HL(1)), 1-methyl-2-pyridin-2-ylbenzimidazole (HL(2)), and 2-(1H-imidazol-2-yl)pyridine (HL(3)) and the proligand 2-phenyl-1H-benzimidazole (HL(4)) have been used to prepare five different types of new ruthenium(II) arene compounds: (i) monocationic complexes with the general formula [(η(6)-arene)RuCl(κ(2)-N,N-HL)]Y [HL = HL(1), HL(2), or HL(3); Y = Cl or BF4; arene = 2-phenoxyethanol (phoxet), benzene (bz), or p-cymene (p-cym)]; (ii) dicationic aqua complexes of the formula [(η(6)-arene)Ru(OH2)(κ(2)-N,N-HL(1))](Y)2 (Y = Cl or TfO; arene = phoxet, bz, or p-cym); (iii) the nucleobase derivative [(η(6)-arene)Ru(9-MeG)(κ(2)-N,N-HL(1))](PF6)2 (9-MeG = 9-methylguanine); (iv) neutral complexes consistent with the formulation [(η(6)-arene)RuCl(κ(2)-N,N-L(1))] (arene = bz or p-cym); (v) the neutral cyclometalated complex [(η(6)-p-cym)RuCl(κ(2)-N,C-L(4))]. The cytototoxic activity of the new ruthenium(II) arene compounds has been evaluated in several cell lines (MCR-5, MCF-7, A2780, and A2780cis) in order to establish structure-activity relationships. Three of the compounds with the general formula [(η(6)-arene)RuCl(κ(2)-N,N-HL(1))]Cl differing in the arene moiety have been studied in depth in terms of thermodynamic dissociation constants, aquation kinetic constants, and DNA binding measurements. The biologically most active compound is the p-cym derivative, which strongly destabilizes the DNA double helix, whereas those with bz and phoxet have only a small effect on the stability of the DNA double helix. Moreover, the inhibitory activity of several compounds toward CDK1 has also been evaluated. The DNA binding ability of some of the studied compounds and their CDK1 inhibitory effect suggest a multitarget mechanism for their biological activity.
    Inorganic Chemistry 10/2014; 53(20). DOI:10.1021/ic501865h · 4.79 Impact Factor

Full-text (2 Sources)

Download
21 Downloads
Available from
May 16, 2014