Meningococcal conjugate vaccines: optimizing global impact

Epidemic Intelligence Service, Division of Applied Sciences, Scientific Education and Professional Development Program Office.
Infection and Drug Resistance 09/2011; 4:161-9. DOI: 10.2147/IDR.S21545
Source: PubMed

ABSTRACT Meningococcal conjugate vaccines have several advantages over polysaccharide vaccines, including the ability to induce greater antibody persistence, avidity, immunologic memory, and herd immunity. Since 1999, meningococcal conjugate vaccine programs have been established across the globe. Many of these vaccination programs have resulted in significant decline in meningococcal disease in several countries. Recent introduction of serogroup A conjugate vaccine in Africa offers the potential to eliminate meningococcal disease as a public health problem in Africa. However, the duration of immune response and the development of widespread herd immunity in the population remain important questions for meningococcal vaccine programs. Because of the unique epidemiology of meningococcal disease around the world, the optimal vaccination strategy for long-term disease prevention will vary by country.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Active smoking is a recognized risk factor of various infectious diseases. In a systematic review published in BMC Public Health, Murray et al. demonstrated that exposure to passive smoking significantly increased the risk of meningococcal disease among children. Their review especially highlights that the risk remains high even if the exposure occurs during pregnancy or after birth, although the authors could not disentangle the independent effects of smoking during pregnancy from those in the postnatal period. How passive smoking increases the risk of childhood meningococcal disease is not precisely known. Both exposure to 'smoke', or 'smokers' (who are highly susceptible to pharyngeal carriage of meningococci) are postulated mechanisms, but unfortunately very few studies have examined the risk of exposure by considering these two variables separately, and this therefore remains a research priority. Quitting may well be the mainstay of preventing tobacco-related hazards but the available global data suggest that most smokers are reluctant to quit. Among other interventions, immunizing children with a meningococcal conjugate vaccine could, theoretically, reduce the risk of meningococcal disease among children and their smoker household contacts through herd immunity. See related article
    BMC Medicine 12/2012; 10(1):160. DOI:10.1186/1741-7015-10-160 · 7.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial meningitis is a major public health problem in the African 'Meningitis Belt', where recurrent unpredictable epidemics occur. Despite the introduction in 2010 of the conjugate A vaccine, the reactive strategy remains important for responding to epidemics caused by other bacteria and in areas not yet vaccinated. Review of weekly numbers of suspected cases in Niger, Mali and Burkina Faso identified spatial disparities in the annual patterns of meningitis, which suggested a more local way of defining epidemics and initiating a timely vaccination campaign. We defined an epidemic district-year as an excess of cases compared to the incidence previously experienced in the given district. Groups of similar districts in terms of seasonal patterns were identified by cluster analysis. We investigated a cluster-specific criterion of early epidemic onset to anticipate epidemic district-years. These were encouraging, as epidemic district-years were fairly efficiently captured, with an average time gained of 2.5 weeks over the current strategy. This early-onset criterion could help ensure timely implementation of vaccination campaigns without the need to modify the implemented surveillance system. The next step is to extend this study to other countries of the Meningitis Belt, and to explain the differences in seasonal patterns in the different clusters.
    Transactions of the Royal Society of Tropical Medicine and Hygiene 01/2013; 107(1):30-6. DOI:10.1093/trstmh/trs010 · 1.93 Impact Factor


1 Download
Available from