Article

Effect of Auditory Cortex Deactivation on Stimulus-Specific Adaptation in the Medial Geniculate Body

Auditory Neurophysiology Unit, Laboratory for the Neurobiology of Hearing, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego, 1, Spain.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 11/2011; 31(47):17306-16. DOI: 10.1523/JNEUROSCI.1915-11.2011
Source: PubMed

ABSTRACT An animal's survival may depend on detecting new events or objects in its environment, and it is likely that the brain has evolved specific mechanisms to detect such changes. In sensory systems, neurons often exhibit stimulus-specific adaptation (SSA) whereby they adapt to frequently occurring stimuli, but resume firing when "surprised" by rare or new ones. In the auditory system, SSA has been identified in the midbrain, thalamus, and auditory cortex (AC). It has been proposed that the SSA observed subcortically originates in the AC as a higher-order property that is transmitted to the subcortical nuclei via corticofugal pathways. Here we report that SSA in the auditory thalamus of the rat remains intact when the AC is deactivated by cooling, thus demonstrating that the AC is not necessary for the generation of SSA in the thalamus. The AC does, however, modulate the responses of thalamic neurons in a way that strongly indicates a gain modulation mechanism. The changes imposed by the AC in thalamic neurons depend on the level of SSA that they exhibit.

Download full-text

Full-text

Available from: Flora M Antunes, Jul 04, 2015
1 Follower
 · 
167 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prompt detection of unexpected changes in the sensory environment is critical for survival. In the auditory domain, the occurrence of a rare stimulus triggers a cascade of neurophysiological events spanning over multiple time-scales. Besides the role of the mismatch negativity (MMN), whose cortical generators are located in supratemporal areas, cumulative evidence suggests that violations of auditory regularities can be detected earlier and lower in the auditory hierarchy. Recent human scalp recordings have shown signatures of auditory mismatch responses at shorter latencies than those of the MMN. Moreover, animal single-unit recordings have demonstrated that rare stimulus changes cause a release from stimulus-specific adaptation in neurons of the primary auditory cortex, the medial geniculate body (MGB), and the inferior colliculus (IC). Although these data suggest that change detection is a pervasive property of the auditory system which may reside upstream cortical sites, direct evidence for the involvement of subcortical stages in the human auditory novelty system is lacking. Using event-related functional magnetic resonance imaging during a frequency oddball paradigm, we here report that auditory deviance detection occurs in the MGB and the IC of healthy human participants. By implementing a random condition controlling for neural refractoriness effects, we show that auditory change detection in these subcortical stations involves the encoding of statistical regularities from the acoustic input. These results provide the first direct evidence of the existence of multiple mismatch detectors nested at different levels along the human ascending auditory pathway.
    Neuropsychologia 02/2015; DOI:10.1016/j.neuropsychologia.2015.01.001 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this account, we attempt to integrate two parallel, but thus far, separate lines of research on auditory novelty detection: (1) human studies of EEG recordings of the mismatch negativity (MMN), and (2) animal studies of single-neuron recordings of stimulus-specific adaptation (SSA). The studies demonstrating the existence of novelty neurons showing SSA at different levels along the auditory pathway's hierarchy, together with the recent results showing human auditory-evoked potential correlates of deviance detection at very short latencies, that is, at 20-40 ms from change onset, support the view that novelty detection is a key principle that governs the functional organization of the auditory system. Furthermore, the generation of the MMN recorded from the human scalp seems to involve a cascade of neuronal processing that occurs at different successive levels of the auditory system's hierarchy.
    Psychophysiology 02/2014; 51(2):111-23. DOI:10.1111/psyp.12156 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sleep entails a disconnection from the external environment. By and large, sensory stimuli do not trigger behavioral responses and are not consciously perceived as they usually are in wakefulness. Traditionally, sleep disconnection was ascribed to a thalamic "gate," which would prevent signal propagation along ascending sensory pathways to primary cortical areas. Here, we compared single-unit and LFP responses in core auditory cortex as freely moving rats spontaneously switched between wakefulness and sleep states. Despite robust differences in baseline neuronal activity, both the selectivity and the magnitude of auditory-evoked responses were comparable across wakefulness, Nonrapid eye movement (NREM) and rapid eye movement (REM) sleep (pairwise differences <8% between states). The processing of deviant tones was also compared in sleep and wakefulness using an oddball paradigm. Robust stimulus-specific adaptation (SSA) was observed following the onset of repetitive tones, and the strength of SSA effects (13-20%) was comparable across vigilance states. Thus, responses in core auditory cortex are preserved across sleep states, suggesting that evoked activity in primary sensory cortices is driven by external physical stimuli with little modulation by vigilance state. We suggest that sensory disconnection during sleep occurs at a stage later than primary sensory areas.
    Cerebral Cortex 12/2013; 25(5). DOI:10.1093/cercor/bht328 · 8.31 Impact Factor