Enhanced HMGB1 expression may contribute to Th17 cells activation in rheumatoid arthritis.

Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
Clinical and Developmental Immunology (Impact Factor: 3.06). 01/2012; 2012:295081. DOI: 10.1155/2012/295081
Source: PubMed

ABSTRACT Rheumatoid arthritis(RA) is a common autoimmune disease associated with Th17 cells, but what about the effect of high-mobility group box chromosomal protein 1 (HMGB1) and the relationship between Th17-associated factors and HMGB1 in RA remains unknown. In the present study, we investigated the mRNA levels of HMGB1, RORγt, and IL-17 in peripheral blood mononuclear cells (PBMCs) from patients with rheumatoid arthritis by quantitative real-time PCR (RT-qPCR), and the concentrations of HMGB1, IL-17, and IL-23 in plasma were detected by ELISA. And then, the effect of HMGB1 on Th17 cells differentiation was analyzed in vitro. Our clinical studies showed that the mRNAs of HMGB1, RORγt, and IL-17 in patients were higher than that in health control (P < 0.05), especially in active RA patients (P < 0.05). The plasma HMGB1, IL-17, and IL-23 in RA patients were also higher than that in health control (P < 0.05); there was a positive correlation between the expression levels of HMGB1 and the amount of CRP, ERS, and RF in plasma. In vitro, the IL-17-produced CD4(+)T cells were increased with 100 ng/mL rHMGB1 for 12h, which indicated that the increased HMGB1 might contribute to Th17 cells activation in RA patients.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The architectural high mobility group box 1 (Hmgb1) protein acts as both a nuclear and an extracellular regulator of various biological processes, including skeletogenesis. Here we report its contribution to the evolutionarily conserved, distinctive regulation of the matrilin-1 gene (Matn1) expression in amniotes. We previously demonstrated that uniquely assembled proximal promoter elements restrict Matn1 expression to specific growth plate cartilage zones by allowing varying doses of L-Sox5/Sox6 and Nfi proteins to fine-tune their Sox9-mediated transactivation. Here, we dissected the regulatory mechanisms underlying the activity of a conserved distal promoter element 1. We show that this element carries three Sox-binding sites, works as an enhancer in vivo, and allows promoter activation by the Sox5/6/9 chondrogenic trio. In early steps of chondrogenesis, declining Hmgb1 expression overlaps with the onset of Sox9 expression. Unlike repression in late steps, Hmgb1 overexpression in early chondrogenesis increases Matn1 promoter activation by the Sox trio, and forced Hmgb1 expression in COS-7 cells facilitates induction of Matn1 expression by the Sox trio. The conserved Matn1 control elements bind Hmgb1 and SOX9 with opposite efficiency in vitro. They show higher HMGB1 than SOX trio occupancy in established chondrogenic cell lines, and HMGB1 silencing greatly increases MATN1 and COL2A1 expression. Together, these data thus suggest a model whereby Hmgb1 helps recruit the Sox trio to the Matn1 promoter and thereby facilitates activation of the gene in early chondrogenesis. We anticipate that Hmgb1 may similarly affect transcription of other cartilage-specific genes.
    Biochimica et Biophysica Acta 07/2013; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by eosinophil-dominant infiltration in Europe and the United States. However, CRSwNP in Asia has shown different immunopathologic features. High-mobility group protein box 1 (HMGB1) is a DNA-binding protein that has been suggested to be involved in various chronic inflammatory diseases. The objective of this study is to investigate whether HMGB1 is augmented in the Chinese eosinophilic CRSwNP and if non-eosinophilic CRSwNP is associated with interleukin 5 (IL-5), IL-8, and tumor necrosis factor α (TNF-α). Nasal polyps specimens were collected from 41 patients with CRSwNP (20 eosinophilic and 21 non-eosinophilic) undergoing functional endoscopic sinus surgery (FESS). Biopsies of uncinate process, and ethmoidal mucosa from 9 non-CRS patients were used as controls by means of immunohistochemistry (IHC) staining, Western blotting, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). HMGB1-positive expression was significantly increased in the epithelium and among the large inflammatory cells infiltration in Eos CRSwNP and non-Eos CRSwNP as compared with controls (p < 0.001). The HMGB1 protein and messenger RNA (mRNA) levels of HMGB1, IL-5, IL-8, and TNF-α were significantly higher in eosinophilic CRSwNP than those from controls and non-eosinophilic CRSwNP, but no significant differences in these markers were found between non-eosinophilic CRSwNP and controls. HMGB1 expression levels correlated significantly and positively with IL-5, IL-8, and TNF-α (rs = 0.665, 0.771, and 0.724, respectively; p < 0.001) and slightly with eosinophil infiltration (rs = 0.149; p = 0.012) and the blood eosinophils count (rs = 0.225; p = 0.001) in all samples. Upregulation of HMGB1 could be a significant marker typically in eosinophilic CRSwNP and it may also contribute to the pathogenesis of CRSwNP along with IL-5, IL-8, and TNF-α.
    International Forum of Allergy and Rhinology 02/2014; · 1.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-mobility group box 1 (HMGB1) proteins are substantially up-regulated in acute and chronic hepatitis. However, the immunopathogenic role of HMGB1 in patients with chronic hepatitis B (CHB) has not been elucidated. In this study, using a cohort of 36 CHB patients, we demonstrated a crucial role for HMGB1 to modulate balance between regulatory T (Treg) and T helper 17 (Th17) cells via the toll-like receptor (TLR)-4-interleukin (IL)-6 pathway. Serum HMGB1 levels were dramatically higher in CHB patients and increased along with liver injury, inflammation and fibrosis. Notably, HMGB1 increased along with decreased Treg/Th17 cells ratios in the periphery or intrahepatic microenvironment, which provides a clue for HMGB1 to favour Th17 responses whereas inhibit Treg responses. For in vitro studies, serum pools were constructed with serum from CHB patients at an advanced stage, whereas peripheral blood mononuclear cells (PBMC) pools were constructed with cells from those at an early stage. CHB-serum significantly enhanced retinoic acid-related orphan receptor-γt (RORγt), whereas they inhibited forkhead box P3 (Foxp3) expression in CHB-PBMC, which could be reversed by blocking of HMGB1, TLR4, or IL-6. Besides, recombinant HMGB1 (rHMGB1) dose-dependently up-regulated RORγt whereas down-regulated Foxp3 expression in CHB-PBMC, and meanwhile, rHMGB1 enhanced TLR4 and IL-6 expression in CHB-PBMC. Moreover, the axis of HMGB1-TLR4-IL-6-Treg/Th17 required noncontact interactions between CD4 and non-CD4 cells. In addition, rHMGB1 down-regulated anti-inflammatory proteins on CD4(+) CD25(+) cells whereas up-regulated pro-inflammatory cytokines in CD4(+) CD25(-) cells. In summary, enriched HMGB1 in CHB patients shifts Treg/Th17 balance to Th17 dominance via the TLR4-IL-6 pathway, which exacerbates liver injury and inflammation.
    Journal of Viral Hepatitis 02/2014; 21(2):129-40. · 3.08 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014