n-3 Fatty Acids, Ventricular Arrhythmia–Related Events, and Fatal Myocardial Infarction in Postmyocardial Infarction Patients With Diabetes

Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands.
Diabetes care (Impact Factor: 8.57). 12/2011; 34(12):2515-20. DOI: 10.2337/dc11-0896
Source: PubMed

ABSTRACT We carried out a secondary analysis in high-risk patients with a previous myocardial infarction (MI) and diabetes in the Alpha Omega Trial. We tested the hypothesis that in these patients an increased intake of the n-3 fatty acids eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and α-linolenic acid (ALA) will reduce the incidence of ventricular arrhythmias and fatal MI.
A subgroup of 1,014 post-MI patients with diabetes aged 60-80 years was randomly allocated to receive one of four trial margarines, three with an additional amount of n-3 fatty acids and one placebo for 40 months. The end points were ventricular arrhythmia-related events and fatal MI. The data were analyzed according to the intention-to-treat principle, using multivariable Cox proportional hazards models.
The patients consumed on average 18.6 g of margarine per day, which resulted in an additional intake of 223 mg EPA plus 149 mg DHA and/or 1.9 g ALA in the active treatment groups. During follow-up, 29 patients developed a ventricular arrhythmia-related events and 27 had a fatal MI. Compared with placebo patients, the EPA-DHA plus ALA group experienced less ventricular arrhythmia-related events (hazard ratio 0.16; 95% CI 0.04-0.69). These n-3 fatty acids also reduced the combined end-point ventricular arrhythmia-related events and fatal MI (0.28; 0.11-0.71).
Our results suggest that low-dose supplementation of n-3 fatty acids exerts a protective effect against ventricular arrhythmia-related events in post-MI patients with diabetes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Earlier studies have suggested an important role of carnitine pathway in cardiovascular pathology. However, the redistribution of carnitine and acylcarnitine pools, as a result of altered carnitine metabolism, is not clearly known in patients with acute myocardial infarction (AMI). We compared the carnitine and acylcarnitine profiles of 65 AMI patients, including 26 ST-elevated myocardial infarction (STEMI) and 39 non-ST-elevated myocardial infarction (NSTEMI), 28 patients with chest pain and 154 normal controls. The levels of carnitine and acylcarnitines in the blood spots were determined using LC-MS/MS. Total and free carnitine levels were significantly higher in all the patient groups in the following order: STEMI > NSTEMI > chest pain. The levels of short- and medium-chain acylcarnitines were significantly higher in patient groups. Among the long-chain acylcarnitines, C14:2 and C16:1 levels were significantly increased in STEMI and NSTEMI. The ratio of free carnitine to short-chain or medium-chain acylcarnitines was significantly decreased in STEMI, NSTEMI and chest pain patients however a significant increase was observed in the ratio of carnitine to long-chain acylcarnitines in all the patient groups as compared to normal controls. In conclusion, alterations in carnitine and acylcarnitine levels in the blood of AMI patients indicate the possibility of impaired carnitine homeostasis in ischemic myocardium. The clinical implications of these findings for the risk screening or diagnosis and prognosis of AMI require additional follow-up studies on large number of patients. We also suggest that a dual-marker strategy using carnitine (longer plasma half-life) in combination with troponin (shorter plasma half-life) could be a more promising biomarker strategy in risk stratification of patients.
    Metabolomics 08/2013; 9(4):828-838. DOI:10.1007/s11306-013-0505-1 · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The long chain n-3 (omega-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), although originally synthesized by microorganisms in the oceans, are primarily obtained from the consumption of fish. Vegetarians, by definition, do not eat fish and thus consume virtually no EPA and DHA. Because conversion of the plant-derived n-3 fatty acid α-linolenic acid (ALA) to EPA and DHA is very low, n-3 tissue concentrations in vegetarians are lower than in omnivores. This review asks 2 questions: what is the evidence that increased n-3 concentrations reduces the risk of cardiovascular disease in vegetarians, and, if it does, how can vegetarians increase their blood and tissue concentrations of these animal-derived fatty acids? At present, both cardiovascular risk markers and cardiovascular events appear to be significantly reduced in vegetarians compared with those in omnivores. If so, and in the absence of data to show that risk in vegetarians could be even lower with higher n-3 concentrations, then the second question becomes moot. However, the absence of evidence is not evidence of absence; therefore, at our present state of knowledge, increasing n-3 concentrations is not an unreasonable goal for vegetarians. This can be accomplished by a variety of approaches, including increased intakes of ALA, consumption of stearidonic acid-enriched soybean oil (if and when it comes to the market), and the use of supplements containing EPA, DHA, or both derived from nonanimal sources (microalgae, biotech yeast, and, in the future, biotech plant oils).
    American Journal of Clinical Nutrition 06/2014; DOI:10.3945/ajcn.113.071324 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity-associated low-grade inflammation of white adipose tissue (WAT) contributes to development of insulin resistance and other disorders. Accumulation of immune cells, especially macrophages, and macrophage polarization from M2 to M1 state, affect intrinsic WAT signaling, namely anti-inflammatory and proinflammatory cytokines, fatty acids (FA), and lipid mediators derived from both n-6 and n-3 long-chain PUFA such as (i) arachidonic acid (AA)-derived eicosanoids and endocannabinoids, and (ii) specialized pro-resolving lipid mediators including resolvins derived from both eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), lipoxins (AA metabolites), protectins and maresins (DHA metabolites). In this respect, potential differences in modulating adipocyte metabolism by various lipid mediators formed by inflammatory M1 macrophages typical of obese state, and non-inflammatory M2 macrophages typical of lean state remain to be established. Studies in mice suggest that (i) transient accumulation of M2 macrophages could be essential for the control of tissue FA levels during activation of lipolysis, (ii) a currently unidentified M2 macrophage-borne signaling molecule(s) could inhibit lipolysis and re-esterification of lipolyzed FA back to triacylglycerols (TAG/FA cycle), and (iii) the egress of M2 macrophages from rebuilt WAT and removal of the negative feedback regulation could allow for a full unmasking of metabolic activities of adipocytes. Thus, M2 macrophages could support remodeling of WAT to a tissue containing metabolically flexible adipocytes endowed with a high capacity of both TAG/FA cycling and oxidative phosphorylation. This situation could be exemplified by a combined intervention using mild calorie restriction and dietary supplementation with EPA/DHA, which enhances the formation of "healthy" adipocytes.
    Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 10/2014; 1851(4). DOI:10.1016/j.bbalip.2014.09.023 · 4.50 Impact Factor

Full-text (2 Sources)

Available from
May 26, 2014