Article

Homozygous lecithin:cholesterol acyltransferase (LCAT) deficiency due to a new loss of function mutation and review of the literature.

Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
Journal of Clinical Lipidology (Impact Factor: 3.59). 11/2011; 5(6):493-9. DOI: 10.1016/j.jacl.2011.07.002
Source: PubMed

ABSTRACT A case of homozygous familial lecithin:cholesterol acyltransferase (LCAT) deficiency with a novel homozygous LCAT missense mutation (replacement of methionine by arginine at position 293 in the amino acid sequence of the LCAT protein) is reported.
The probable diagnosis was suggested by findings of marked high density lipoprotein (HDL) deficiency, corneal opacification, anemia, and renal insufficiency. The diagnosis was confirmed by two dimensional gel electrophoresis of HDL, the measurement of free and esterified cholesterol, and sequencing of the LCAT gene.
In our view the most important aspects of therapy to prevent the kidney disease that these patients develop is careful control of blood pressure and lifestyle measures to optimize non HDL lipoproteins. In the future replacement therapy by gene transfer or other methods may become available.

0 Bookmarks
 · 
117 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size.
    The Journal of Lipid Research 11/2005; 46(10):2246-53. · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasma lipoproteins and glucose homeostasis were evaluated after marked weight loss before and over 12 months following Roux-en-Y gastric-bypass (RYGBP) surgery in 19 morbidly obese women. Standard lipids, remnant-lipoprotein cholesterol (RLP-C); HDL-triglyceride (TG); apolipoproteins (apo) A-I, A-II, E, and A-I-containing HDL subpopulations; lecithin-cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) mass and activity; plasma glucose and insulin levels were measured before and at 1, 3, 6, and 12 months after GBP surgery. Baseline concentrations of TG, RLP-C, glucose, and insulin were significantly higher in obese than in normal-weight, age-matched women, whereas HDL cholesterol (HDL-C), apoA-I, apoA-II, alpha-1 and alpha-2 levels were significantly lower. Over 1 year, significant decreases of body mass index, glucose, insulin, TG, RLP-C, HDL-TG, and prebeta-1 levels were observed with significant increases of HDL-C and alpha-1 levels (all P < 0.05). Changes of fat mass were correlated with those of LDL cholesterol (P = 0.018) and LCAT mass (P = 0.011), but not with CETP mass (P = 0.265). Changes of fasting plasma glucose concentrations were inversely correlated with those of CETP mass (P = 0.005) and alpha-1 level (P = 0.004). Changes of fasting plasma insulin concentrations were positively correlated with those of LCAT mass (P = 0.043) and inversely with changes of alpha-1 (P = 0.03) and alpha-2 (P = 0.05) concentrations. These results demonstrate beneficial changes in HDL remodeling following substantial weight loss induced by RYGBP surgery and that these changes are associated with improvement of glucose homeostasis in these patients.
    The Journal of Lipid Research 08/2010; 51(8):2405-12. · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To better understand the role of LCAT in HDL metabolism, we compared HDL subpopulations in subjects with homozygous (n = 11) and heterozygous (n = 11) LCAT deficiency with controls (n = 22). Distribution and concentrations of apolipoprotein A-I (apoA-I)-, apoA-II-, apoA-IV-, apoC-I-, apoC-III-, and apoE-containing HDL subpopulations were assessed. Compared with controls, homozygotes and heterozygotes had lower LCAT masses (-77% and -13%), and LCAT activities (-99% and -39%), respectively. In homozygotes, the majority of apoA-I was found in small, disc-shaped, poorly lipidated prebeta-1 and alpha-4 HDL particles, and some apoA-I was found in larger, lipid-poor, discoidal HDL particles with alpha-mobility. No apoC-I-containing HDL was noted, and all apoA-II and apoC-III was detected in lipid-poor, prebeta-mobility particles. ApoE-containing particles were more disperse than normal. ApoA-IV-containing particles were normal. Heterozygotes had profiles similar to controls, except that apoC-III was found only in small HDL with prebeta-mobility. Our data are consistent with the concepts that LCAT activity: 1) is essential for developing large, spherical, apoA-I-containing HDL and for the formation of normal-sized apoC-I and apoC-III HDL; and 2) has little affect on the conversion of prebeta-1 into alpha-4 HDL, only slight effects on apoE HDL, and no effect on apoA-IV HDL particles.
    The Journal of Lipid Research 04/2007; 48(3):592-9. · 4.73 Impact Factor