Article

Glycoprotein profiles of human breast cells demonstrate a clear clustering of normal/benign versus malignant cell lines and basal versus luminal cell lines.

Department of Chemistry and Biochemistry, San Francisco State University , San Francisco, California 94132, United States.
Journal of Proteome Research (Impact Factor: 5.06). 11/2011; 11(2):656-67. DOI: 10.1021/pr201041j
Source: PubMed

ABSTRACT Gene expression profiling has defined molecular subtypes of breast cancer including those identified as luminal and basal. To determine if glycoproteins distinguish various subtypes of breast cancer, we obtained glycoprotein profiles from 14 breast cell lines. Unsupervised hierarchical cluster analysis demonstrated that the glycoprotein profiles obtained can serve as molecular signatures to classify subtypes of breast cancer, as well as to distinguish normal and benign breast cells from breast cancer cells. Statistical analyses were used to identify glycoproteins that are overexpressed in normal versus cancer breast cells, and those that are overexpressed in luminal versus basal breast cancer. Among the glycoproteins distinguishing normal breast cells from cancer cells are several proteins known to be involved in cell adhesion, including proteins previously identified as being altered in breast cancer. Basal breast cancer cell lines overexpressed a number of CD antigens, including several integrin subunits, relative to luminal breast cancer cell lines, whereas luminal breast cancer cells overexpressed carbonic anhydrase 12, clusterin, and cell adhesion molecule 1. The differential expression of glycoproteins in these breast cancer cell lines readily allows the classification of the lines into normal, benign, malignant, basal, and luminal groups.

2 Bookmarks
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study is to explore the different expressions of serum N-glycoproteins and glycosylation sites between hepatocellular carcinoma (HCC) patients and healthy controls. We combined high abundant proteins depletion and hydrophilic affinity method to enrich the glycoproteins. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS), we extensively surveyed different expressions of glycosylation sites and glycoproteins between the two groups. This approach identified 152 glycosylation sites and 54 glycoproteins expressed differently between HCC patients and healthy controls. With the absolute values of Pearson coefficients of at least 0.8, eight proteins were identified significantly up or down regulated in HCC serum. Those proteins are supposed to be involved in several biological processes, cellular components and molecular functions of hepatocarcinogenesis. Several of them had been reported abnormally regulated in several kinds of malignant tumors, and may be promising biomarkers of HCC. Our work provides a systematic and quantitative method of glycoproteomics and demonstrates some key changes in clinical HCC serum. These proteomic signatures may help to unveil the underlying mechanisms of hepatocarcinogenesis and may be useful for the exploration of candidate biomarkers.
    PLoS ONE 01/2013; 8(10):e77161. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Secreted and plasma membrane glycoproteins are considered excellent candidates for disease biomarkers. Herein we describe the identification of secreted and plasma membrane glycoproteins that are differentially expressed among a family of three breast cancer cell lines that models the progression of breast cancer. Using two-dimensional liquid chromatography-tandem mass spectrometry we identified more than 40 glycoproteins that were differentially expressed in either the premalignant (MCF10AT) or the fully malignant (MCF10CA1a) cell lines of this model system. Comparative analysis revealed that the differentially expressed breast cancer progression-associated glycoproteins were among the most highly expressed in the malignant (MCF10CA1a) breast cancer cell line; a subset of these were detected only in the malignant line; and others were detected in the malignant line at levels 25 to 50 times greater than in the benign (MCF10A) line. Using the results from this model cell system as a guide, we then carried out glycoproteomic analyses of normal and cancerous breast tissue lysates. Eleven of the glycoproteins differentially expressed in the breast cell lines were identified in the tissue lysates. Among these glycoproteins, collagen alpha-1 (XII) chain was expressed at dramatically higher (~10-fold) levels in breast cancer than in normal tissue. Identifying glycoproteins differentially expressed during cancer progression results in information on the biological processes and key pathways associated with cancer. In addition, new hypotheses and potential biomarkers result from these glycoproteomic studies. Our glycoproteomic analysis of this model of breast cancer provides a roadmap for future experimental interventions to further tease apart critical components of tumor progression.
    Journal of proteomics 11/2013; · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycosylation is estimated to be found in over 50% of human proteins. Aberrant protein glycosylation and alteration of glycans are closely related to many diseases. More than half of the cancer biomarkers are glycosylated-proteins, and specific glycoforms of glycosylated-proteins may serve as biomarkers for either the early detection of disease or the evaluation of therapeutic efficacy for treatment of diseases. Glycoproteomics, therefore, becomes an emerging field that can make unique contributions to the discovery of biomarkers of cancers. The recent advances in mass spectrometry (MS)-based glycoproteomics, which can analyze thousands of glycosylated-proteins in a single experiment, have shown great promise for this purpose. Herein, we described the MS-based strategies that are available for glycoproteomics, and discussed the sensitivity and high throughput in both qualitative and quantitative manners. The discovery of glycosylated-proteins as biomarkers in some representative diseases by employing glycoproteomics was also summarized.
    Clinical proteomics. 01/2014; 11(1):18.

Full-text (2 Sources)

View
36 Downloads
Available from
May 29, 2014