Lipid-Mediated Unfolding of 3β-Hydroxysteroid Dehydrogenase 2 Is Essential for Steroidogenic Activity

Mercer University School of Medicine and Memorial University Medical Center, Savannah, Georgia 31404, United States.
Biochemistry (Impact Factor: 3.02). 11/2011; 50(51):11015-24. DOI: 10.1021/bi2016102
Source: PubMed


For inner mitochondrial membrane (IMM) proteins that do not undergo N-terminal cleavage, the activity may occur in the absence of a receptor present in the mitochondrial membrane. One such protein is human 3β-hydroxysteroid dehydrogenase 2 (3βHSD2), the IMM resident protein responsible for catalyzing two key steps in steroid metabolism: the conversion of pregnenolone to progesterone and dehydroepiandrosterone to androstenedione. Conversion requires that 3βHSD2 serve as both a dehydrogenase and an isomerase. The dual functionality of 3βHSD2 results from a conformational change, but the trigger for this change remains unknown. Using fluorescence resonance energy transfer, we found that 3βHSD2 interacted strongly with a mixture of dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidylcholine (DPPC). 3βHSD2 became less stable when incubated with the individual lipids, as indicated by the decrease in thermal denaturation (T(m)) from 42 to 37 °C. DPPG, alone or in combination with DPPC, led to a decrease in α-helical content without an effect on the β-sheet conformation. With the exception of the 20 N-terminal amino acids, mixed vesicles protected 3βHSD2 from trypsin digestion. However, protein incubated with DPPC was only partially protected. The lipid-mediated unfolding completely supports the model in which a cavity forms between the α-helix and β-sheet. As 3βHSD2 lacks a receptor, opening the conformation may activate the protein.

Download full-text


Available from: James L Thomas, Oct 05, 2015
24 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inner mitochondrial membrane protein 3β-hydroxysteroid dehydrogenase 2 (3βHSD2) synthesizes progesterone and androstenedione through its dehydrogenase and isomerase activities. This bifunctionality requires 3βHSD2 to undergo a conformational change. Given its proximity to the proton pump, we hypothesized that pH influences 3βHSD2 conformation and thus activity. Circular dichroism (CD) showed that between pH 7.4 and 4.5, 3βHSD2 retained its primarily α-helical character with a decrease in α-helical content at lower pH values, whereas the β-sheet content remained unchanged throughout. Titrating the pH back to 7.4 restored the original conformation within 25 min. Metabolic conversion assays indicated peak 3βHSD2 activity at pH 4.5 with ~2-fold more progesterone synthesized at pH 4.5 than at pH 3.5 and 7.4. Increasing the 3βHSD2 concentration from 1 to 40 μg resulted in a 7-fold increase in progesterone at pH 4.5, but no change at pH 7.4. Incubation with guanidinum hydrochloride (GdmHCl) showed a three-step cooperative unfolding of 3βHSD2 from pH 7.4 to 4.5, possibly due to the native state unfolding to the intermediate ion core state. With further decreases in pH, increasing concentrations of GdmHCl led to rapid two-step unfolding that may represent complete loss of structure. Between pH 4 and 5, the two intermediate states appeared stable. Stopped-flow kinetics showed slower unfolding at around pH 4, where the protein is in a pseudostable state. Based on our data, we conclude that at pH 4-5, 3βHSD2 takes on a molten globule conformation that promotes the dual functionality of the enzyme.
    Journal of Biological Chemistry 01/2012; 287(12):9534-46. DOI:10.1074/jbc.M111.333278 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Steroidogenic factor 1 (SF-1) is a master regulator for steroidogenesis. In this study, we identified novel SF-1 target genes using a genome-wide promoter tiling array and a DNA microarray. SF-1 was found to regulate human glutathione S-transferase A (GSTA) family genes (hGSTA1-hGSTA4), a superfamily of detoxification enzymes clustered on chromosome 6p12. All hGSTA genes were up-regulated by transduction of SF-1 into human mesenchymal stem cells, while knockdown of endogenous SF-1 in H295R cells down-regulated all hGSTA genes. Chromatin immunoprecipitation assays, however, revealed that SF-1 bound directly to the promoters of hGSTA3 and weakly of hGSTA4. Chromosome conformation capture assays revealed that the coordinated expression of the genes was based on changes in higher-order chromatin structure triggered by SF-1, which enables the formation of long-range interactions, at least between hGSTA1 and hGSTA3 gene promoters. In steroidogenesis, dehydrogenation of the 3-hydroxy group and subsequent Δ(5)-Δ(4) isomerization are thought to be enzymatic properties of 3β-hydroxysteroid dehydrogenase (3β-HSD). Here, we demonstrated that, in steroidogenic cells, the hGSTA1 and hGSTA3 gene products catalyze Δ(5)-Δ(4) isomerization in a coordinated fashion with 3β-HSD II to produce progesterone or Δ(4)-androstenedione from their Δ(5)-precursors. Thus, hGSTA1 and hGSTA3 gene products are new members of steroidogenesis working as Δ(5)-Δ(4) isomerases.-Matsumura, T., Imamichi, Y., Mizutani, T., Ju, Y., Yazawa, T., Kawabe, S., Kanno, M., Ayabe, T., Katsumata, N., Fukami, M., Inatani, M., Akagi, Y., Umezawa, A., Ogata, T., Miyamoto, K. Human glutathione S-transferase A (GSTA) family genes are regulated by steroidogenic factor 1 (SF-1) and are involved in steroidogenesis.
    The FASEB Journal 05/2013; 27(8). DOI:10.1096/fj.12-222745 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The steroidogenic enzyme 3-β hydroxysteroid dehydrogenase 2 (3βHSD2) mediates the conversion of pregnenolone to progesterone and dehydroepiandrosterone to androstenedione through both its dehydrogenase and isomerase activities, making it necessary for the protein to undergo a reversible conformational change. We hypothesized that chaperones assist 3βHSD2 in switching between the conformations to initiate, enhance, and maintain activity. In the presence of the chaperone lauryl maltoside (LM), 3βHSD2 immediately converted pregnenolone to progesterone, with a 6.4-fold increase in synthesis. Using far-UV circular dichroism (CD), we found that addition of LM increased 3βHSD2’s α-helical content, which over time reverted to control levels, suggesting the formation of a stable but reversible conformation possibly due to hydrophobic interactions of the protein with LM micelles. We also found that LM increased fluorescence resonance energy transfer (FRET) about 11-fold between 3βHSD2 and fluorescing ANS molecules. This observation supports the idea that detergent(s) act as chaperones to assist 3βHSD2 in forming stable complexes, which in turn promotes proper folding. Mass spectrometric fingerprinting illustrated that LM incubation resulted in an ordered fragmentation of molecular mass from 39 to 13 kDa, as compared to limited or no proteolysis in the absence of LM. In addition, space-filling modeling demonstrated that 3βHSD2 association with detergents likely exposed the hydrophobic region, leading to its proteolysis. We conclude that detergents help 3βHSD2 to refold in order to rejuvenate, contributing to the ability of cells to rapidly produce steroids when needed.
    ACS Chemical Biology 05/2013; 8(5). DOI:10.1021/cb400052s · 5.33 Impact Factor
Show more