Article

Promoter regulation by distinct mechanisms of functional interplay between lysine acetylase Rtt109 and histone chaperone Asf1.

Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2011; 108(49):19599-604. DOI: 10.1073/pnas.1111501108
Source: PubMed

ABSTRACT The promoter activity of yeast genes can depend on lysine 56 (K56) acetylation of histone H3. This modification of H3 is performed by lysine acetylase Rtt109 acting in concert with histone chaperone Asf1. We have examined the contributions of Rtt109, Asf1, and H3 K56 acetylation to nutrient regulation of a well-studied metabolic gene, ARG1. As expected, Rtt109, Asf1, and H3 K56 acetylation are required for maximal transcription of ARG1 under inducing conditions. However, Rtt109 and Asf1 also inhibit ARG1 under repressing conditions. This inhibition requires Asf1 binding to H3-H4 and Rtt109 KAT activity, but not tail acetylation of H3-H4 or K56 acetylation of H3. These observations suggest the existence of a unique mechanism of transcriptional regulation by Rtt109. Indeed, chromatin immunoprecipitation and genetic interaction studies support a model in which promoter-targeted Rtt109 represses ARG1 by silencing a pathway of transcriptional activation that depends on ASF1. Collectively, our results show that ARG1 transcription intensity at its induced and repressed set points is controlled by different mechanisms of functional interplay between Rtt109 and Asf1.

Download full-text

Full-text

Available from: Kathy Lin, May 20, 2014
1 Follower
 · 
89 Views
  • New Developments in Chromatin Research, 1 edited by Neil M. Simpson, Valerie J. Stewart, 08/2012: chapter 2: pages 29-58; Nova Science Publishers.
  • [Show abstract] [Hide abstract]
    ABSTRACT: ANTI-SILENCING FUNCTION 1 (ASF1) is an evolutionarily conserved histone chaperone involved in diverse chromatin-based processes in eukaryotes. Yet, its role in transcription and the underlying molecular mechanisms remain largely elusive, particularly in plants. Here, we show that the Arabidopsis thaliana ASF1 homologous genes, AtASF1A and AtASF1B, are involved in gene transcription activation in response to heat stress. The Atasf1ab mutant displays defective basal as well as acquired thermotolerance phenotypes. Heat-induced expression of several key genes, including the HEAT SHOCK PROTEIN (HSP) genes Hsp101, Hsp70, Hsa32, Hsp17.6A and Hsp17.6B-CI, and the HEAT SHOCK FACTOR (HSF) gene HsfA2 but not HsfB1 is drastically impaired in Atasf1ab as compared to that in wild type. We found that AtASF1A/B proteins are recruited onto chromatin and their enrichment is correlated with nucleosome removal and RNA polymerase II accumulation at the promoter and coding regions of HsfA2 and Hsa32 but not HsfB1. Moreover, AtASF1A/B facilitate H3K56 acetylation (H3K56ac), which is associated with HsfA2 and Hsa32 activation. Taken together, our study unravels an important function of AtASF1A/B in plant heat stress response and suggests that AtASF1A/B participate in transcription activation of some but not all HSF and HSP genes via nucleosome removal and H3K56ac stimulation.
    Plant Cell and Environment 02/2014; 37(9). DOI:10.1111/pce.12299 · 5.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin remodeling complexes cooperate to regulate gene promoters and to define chromatin neighborhoods. Here, we identified genetic and functional connections between two silencing-related chromatin factors in the maintenance of native heterochromatic structures and nucleosome composition at promoters. Building on a previously reported link between the histone chaperone Asf1 and the Yaf9 subunit of the SWR1-C chromatin remodeler, we found that ASF1 broadly interacted with genes encoding for SWR1-C subunits. Asf1 and Yaf9 were required for maintaining expression of heterochromatin-proximal genes and they worked cooperatively to prevent repression of telomere-proximal genes by limiting the spread of SIR complexes into nearby regions. Genome-wide Sir2 profiling, however, revealed that the cooperative heterochromatin regulation of Asf1 and SWR1-C occurred only on a subset of yeast telomeres. Extensive analyses demonstrated that formation of aberrant heterochromatin structures in the absence of ASF1 and YAF9 was not causal for the pronounced growth and transcriptional defects in cells lacking both these factors. Instead, genetic and molecular analysis revealed that H3K56 acetylation was required for efficient deposition of H2A.Z at subtelomeric and euchromatic gene promoters, pointing to a role for Asf1-dependent H3K56 acetylation in SWR1-C biology.
    Genetics 02/2014; 197(1). DOI:10.1534/genetics.114.162909 · 4.87 Impact Factor