Direct-coupling analysis of residue coevolution captures native contacts across many protein families.

Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA 92093-0374, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2011; 108(49):E1293-301. DOI: 10.1073/pnas.1111471108
Source: PubMed

ABSTRACT The similarity in the three-dimensional structures of homologous proteins imposes strong constraints on their sequence variability. It has long been suggested that the resulting correlations among amino acid compositions at different sequence positions can be exploited to infer spatial contacts within the tertiary protein structure. Crucial to this inference is the ability to disentangle direct and indirect correlations, as accomplished by the recently introduced direct-coupling analysis (DCA). Here we develop a computationally efficient implementation of DCA, which allows us to evaluate the accuracy of contact prediction by DCA for a large number of protein domains, based purely on sequence information. DCA is shown to yield a large number of correctly predicted contacts, recapitulating the global structure of the contact map for the majority of the protein domains examined. Furthermore, our analysis captures clear signals beyond intradomain residue contacts, arising, e.g., from alternative protein conformations, ligand-mediated residue couplings, and interdomain interactions in protein oligomers. Our findings suggest that contacts predicted by DCA can be used as a reliable guide to facilitate computational predictions of alternative protein conformations, protein complex formation, and even the de novo prediction of protein domain structures, contingent on the existence of a large number of homologous sequences which are being rapidly made available due to advances in genome sequencing.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The epidemiology of HIV-1 varies in different areas of the world, and it is possible that this complexity may leave unique footprints in the viral genome. Thus, we attempted to find significant patterns in global HIV-1 genome sequences. By applying the rule inference algorithm RIPPER (Repeated Incremental Pruning to Produce Error Reduction) to multiple sequence alignments of Env sequences from four classes of compiled datasets, we generated four sets of signature patterns. We found that these patterns were able to distinguish southeastern Asian from nonsoutheastern Asian sequences with 97.5% accuracy, Chinese from non-Chinese sequences with 98.3% accuracy, African from non-African sequences with 88.4% accuracy, and southern African from non-southern African sequences with 91.2% accuracy. These patterns showed different associations with subtypes and with amino acid positions. In addition, some signature patterns were characteristic of the geographic area from which the sample was taken. Amino acid features corresponding to the phylogenetic clustering of HIV-1 sequences were consistent with some of the deduced patterns. Using a combination of patterns inferred from subtypes B, C, and all subtypes chimeric with CRF01_AE worldwide, we found that signature patterns of subtype C were extremely common in some sampled countries (for example, Zambia in southern Africa), which may hint at the origin of this HIV-1 subtype and the need to pay special attention to this area of Africa. Signature patterns of subtype B sequences were associated with different countries. Even more, there are distinct patterns at single position 21 with glycine, leucine and isoleucine corresponding to subtype C, B and all possible recombination forms chimeric with CRF01_AE, which also indicate distinct geographic features. Our method widens the scope of inference of signature from geographic, genetic, and genomic viewpoints. These findings may provide a valuable reference for epidemiological research or vaccine design.
    Virologica Sinica 08/2013; 28(4):228-38.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computational approaches for detecting co-evolution in proteins allow for the identification of protein-protein interaction networks in different organisms and the assignment of function to under-explored proteins. The detection of co-variation of amino acids within or between proteins, moreover, allows for the discovery of residue-residue contacts and highlights functional residues that can affect the binding affinity, catalytic activity, or substrate specificity of a protein. To explore the functional impact of co-evolutionary changes in proteins, a combined experimental and computational approach must be recruited. Here, we review recent studies that apply computational and experimental tools to obtain novel insight into the structure, function, and evolution of proteins. Specifically, we describe the application of co-evolutionary analysis for predicting high-resolution three-dimensional structures of proteins. In addition, we describe computational approaches followed by experimental analysis for identifying specificity-determining residues in proteins. Finally, we discuss studies addressing the importance of such residues in terms of the functional divergence of proteins, allowing proteins to evolve new functions while avoiding crosstalk with existing cellular pathways or forming reproductive barriers and hence promoting speciation.
    Cellular and Molecular Life Sciences CMLS 09/2013; · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change.
    Biomolecules. 01/2014; 4(1):291-314.

Full-text (2 Sources)

Available from
May 29, 2014