Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy.

Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2011; 108(51):E1417-22. DOI: 10.1073/pnas.1108754108
Source: PubMed

ABSTRACT Here, we address the question of why the influenza A virus hemagglutinin (HA) does not escape immunity by hyperglycosylation. Uniquely among dozens of monoclonal antibodies specific for A/Puerto Rico/8/34, escape from H28-A2 neutralization requires substitutions introducing N-linked glycosylation at residue 131 or 144 in the globular domain. This escape decreases viral binding to cellular receptors, which must be compensated for by additional substitutions in HA or neuraminidase that enable viral replication. Sequence analysis of circulating H1 influenza viruses confirms the in vivo relevance of our findings: natural occurrence of glycosylation at residue 131 is always accompanied by a compensatory mutation known to increase HA receptor avidity. In vaccinated mice challenged with WT vs. H28-A2 escape mutants, the selective advantage conferred by glycan-mediated global reduction in antigenicity is trumped by the costs of diminished receptor avidity. These findings show that, although N-linked glycosylation can broadly diminish HA antigenicity, fitness costs restrict its deployment in immune evasion.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A(H3N2) influenza viruses have circulated in humans since 1968, and antigenic drift of the hemagglutinin (HA) protein continues to be a driving force that allows the virus to escape the human immune response. Since the major antigenic sites of the HA overlap into the receptor binding site (RBS) of the molecule, the virus constantly struggles to effectively adapt to host immune responses, without compromising its functionality. Here, we have structurally assessed the evolution of the A(H3N2) virus HA RBS, using an established recombinant expression system. Glycan binding specificities of nineteen A(H3N2) influenza virus HAs, each a component of the seasonal influenza vaccine between 1968 and 2012, were analyzed. Results suggest that while its receptor-binding site has evolved from one that can bind a broad range of human receptor analogs to one with a more restricted binding profile for longer glycans, the virus continues to circulate and transmit efficiently among humans.
  • [Show abstract] [Hide abstract]
    ABSTRACT: 'Two-way' transmission of influenza viruses between humans and swine has been frequently observed and the occurrence of the 2009 H1N1 pandemic influenza (pdm/09) demonstrated that swine-origin viruses could facilitate the genesis of a pandemic strain. Although multiple introductions to and reassortment in swine of the pdm/09 virus have been repeatedly reported in both Eurasia and the Americas, its long-term impact on the development of swine influenza viruses (SIVs) has not been systematically explored. Our comprehensive evolutionary studies on the complete genomes of 387 SIVs obtained from 2009 to 2012 in influenza surveillance in China revealed 17 reassortant genotypes with pdm/09-origin genes. Even though the entire 2009 pandemic virus and its surface genes cannot persist, its internal genes have becoming established and are now the predominant lineages in pigs in the region. The main persistent pdm/09-origin reassortant forms had at least 5 pdm/09-origin internal genes and their surface genes primarily of European avian-like (EA) or human H3N2-like SIV origin. These findings represent a marked change to the evolutionary patterns and ecosystem of SIVs in China. It is possible that the pdm/09-origin internal genes may be in the process of replacing EA- or triple reassortant-like internal genes. These alterations to the SIV gene pool need to be continually monitored to assess changes in the potential for SIVs to transmit to humans.
    Journal of Virology 07/2014; 88(18). DOI:10.1128/JVI.01327-14 · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The extent of the role of N-linked glycans (N-glycans) in shielding influenza A hemagglutinin against host antibodies has proved controversial, with different authors making widely different assumptions. One common assumption is that N-glycans physically shield surface residues that are near to glycosylation sites, thereby preventing antibodies from binding to them. However, it is unclear, from existing experimental evidence, whether antibodies that bind close to N-glycans are a rare or commonplace feature of human herd immune responses to influenza A hemagglutinin. The aim of this paper is to present a computational analysis of mutations in the vicinity of N-glycans that will facilitate a better understanding of their protective role. We identify, from an analysis of over 6,000 influenza A H3N2 sequences, a set of residues adjacent to N-glycosylation sites that are highly likely to be involved in antigenic escape from host antibodies. Fifteen of these residues occur within 10Å of an N-glycosylation site. Hence we conclude that it is relatively common for antibodies to bind in close proximity to N-glycans on the surface of hemagglutinin, with any shielding effect largely attributable to the inability of host antibodies to bind across an N-glycan attachment site, rather than to the physical masking of neighbouring residues.
    Glycobiology 09/2014; 25(1). DOI:10.1093/glycob/cwu097 · 3.75 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014