Occidiofungin's Chemical Stability and In Vitro Potency against Candida Species

Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA.
Antimicrobial Agents and Chemotherapy (Impact Factor: 4.45). 11/2011; 56(2):765-9. DOI: 10.1128/AAC.05231-11
Source: PubMed

ABSTRACT Occidiofungin is a cyclic glyco-lipopeptide produced by Burkholderia contaminans. MICs against Candida species were between 0.5 and 2.0 μg/ml. Occidiofungin retains its in vitro potency in the presence of 5% and 50% human serum with a minimal lethal concentration (MLC) of 2 and 4 μg/ml, respectively. Time-kill and postantifungal effect (PAFE) experiments of occidiofungin against Candida albicans were performed. The results demonstrate that occidiofungin is fungicidal. Occidiofungin was also found to be a very stable molecule. It is resistant to extreme temperatures and pH and maintains its activity following exposure to gastric proteases.

Download full-text


Available from: Leif Smith, Aug 12, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the Burkholderia cepacia complex (Bcc) have recently gained notoriety as significant bacterial pathogens due to their extreme levels of antibiotic resistance, their transmissibility in clinics, their persistence in bacteriostatic solutions, and their intracellular survival capabilities. As pathogens, the Bcc are known to elaborate a number of virulence factors including proteases, lipases and other exoproducts, as well as a number of secretion system associated effectors. Through random and directed mutagenesis studies, we have identified a Bcc gene cluster capable of expressing a toxin that is both hemolytic and required for full Bcc virulence. The Bcc toxin is synthesized via a non-ribosomal peptide synthetase mechanism, and appears to be related to the previously identified antifungal compound burkholdine or occidiofungin. Further testing shows mutations to this gene cluster cause a significant reduction in both hemolysis and Galleria mellonella mortality. Mutation to a glycosyltransferase gene putatively responsible for a structural-functional toxin variant causes only partial reduction in hemolysis. Molecular screening identifies the Bcc species containing this gene cluster, of which several strains produce hemolytic activity.
    Virulence 05/2012; 3(3):286-98. DOI:10.4161/viru.19355
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Burkholdines are cyclic lipopeptides with unusual antifungal potency, making them promising leads as a new class of antifungal agents. However, a recent report using knockout mutagenesis indicates that these and related compounds, such as occidiofungins, xylocandins, and cepacidines, may also be synonymous with the long-known hemolytic virulence factors found in diverse Burkholderia isolates. Because of their possible roles in causing Burkholderia infections or curing fungal infections, it is important to fully define their structures and biological activities using pure compounds. Here, we report the structures of three further burkholdines, Bk-1119, Bk-1213, and Bk-1215, which were elucidated using spectroscopic methods. The absolute configuration of this compound class was determined for the first time using a combination of spectroscopy and chemical degradation techniques. Antifungal and hemolytic activities were assessed for five pure burkholdines, representative of the structural diversity of this lipopeptide class. All of the burkholdines were potent antifungal and hemolytic agents, validating their probable role in virulence. However, one of the burkholdines (Bk-1119) exhibited a >30-fold selectivity for fungi versus sheep erythrocytes and was more than 25-fold more potent than amphotericin against some fungal strains. Therefore, burkholdines have potential to selectively target fungal infections.
    Journal of Natural Products 09/2012; 75(9):1518-23. DOI:10.1021/np300108u
  • [Show abstract] [Hide abstract]
    ABSTRACT: Occidiofungin is a cyclic nonribosomally synthesized antifungal peptide with submicromolar activity produced by the Gram-negative bacterium Burkholderia contaminans. The biosynthetic gene cluster was confirmed to contain two cyclase thioesterases. NMR analysis revealed that the presence of both thioesterases is used to increase the conformational repertoire of the cyclic peptide. The loss of the OcfN cyclic thioesterase by mutagenesis results in a reduction of conformational variants and an appreciable decrease in bioactivity against Candida species. Presumably, the presence of both asparagine and β-hydroxyasparagine variants coordinates the enzymatic function of both of the cyclase thioesterases. OcfN has presumably evolved to be part of the biosynthetic gene cluster due to its ability to produce structural variants that enhance antifungal activity against some fungi. The enhancement of the antifungal activity from the incorporation of an additional cyclase thioesterase into the biosynthetic gene cluster of occidiofungin supports the need to explore new conformational variants of other therapeutic or potentially therapeutic cyclic peptides.
    Journal of Natural Products 02/2013; 76(2). DOI:10.1021/np3005503
Show more