The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases.

SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, USA.
Nucleic Acids Research (Impact Factor: 8.28). 11/2011; 40(Database issue):D742-53. DOI:10.1093/nar/gkr1014
Source: PubMed

ABSTRACT The MetaCyc database ( provides a comprehensive and freely accessible resource for metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are experimentally determined, small-molecule metabolic pathways and are curated from the primary scientific literature. MetaCyc contains more than 1800 pathways derived from more than 30,000 publications, and is the largest curated collection of metabolic pathways currently available. Most reactions in MetaCyc pathways are linked to one or more well-characterized enzymes, and both pathways and enzymes are annotated with reviews, evidence codes and literature citations. BioCyc ( is a collection of more than 1700 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the full genome and predicted metabolic network of one organism. The network, which is predicted by the Pathway Tools software using MetaCyc as a reference database, consists of metabolites, enzymes, reactions and metabolic pathways. BioCyc PGDBs contain additional features, including predicted operons, transport systems and pathway-hole fillers. The BioCyc website and Pathway Tools software offer many tools for querying and analysis of PGDBs, including Omics Viewers and comparative analysis. New developments include a zoomable web interface for diagrams; flux-balance analysis model generation from PGDBs; web services; and a new tool called Web Groups.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Most of the lineages of bacteria have remained unknown beyond environmental surveys using molecular markers. Until the recent characterisation of several strains, the phylum Armatimonadetes (formerly known as 'candidate division OP10') was a dominant and globally-distributed lineage within this 'uncultured majority'. Here we report the first Armatimonadetes genome from the thermophile Chthonomonas calidirosea T49(T) and its role as a saccharide scavenger in a geothermal steam-affected soil environment. Phylogenomic analysis indicates T49(T) to be related closely to the phylum Chloroflexi. The predicted genes encoding for carbohydrate transporters (27 carbohydrate ATP-binding cassette transporter-related genes) and carbohydrate-metabolising enzymes (including at least 55 putative enzymes with glycosyl hydrolase domains) within the 3.43 Mb genome help explain its ability to utilise a wide range of carbohydrates as well as its inability to break down extracellular cellulose. The presence of only a single class of branched amino acid transporter appears to be the causative step for the requirement of isoleucine for growth. The genome lacks many commonly conserved operons (for example, lac and trp). Potential causes for this, such as dispersion of functionally related genes via horizontal gene transfer from distant taxa or recent genome recombination, were rejected. Evidence suggests T49(T) relies on the relatively abundant σ-factors, instead of operonic organisation, as the primary means of transcriptional regulation. Examination of the genome with physiological data and environmental dynamics (including interspecific interactions) reveals ecological factors behind the apparent elusiveness of T49(T) to cultivation and, by extension, the remaining 'uncultured majority' that have so far evaded conventional microbiological techniques.
    The ISME Journal 01/2014; · 8.95 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Pulmonary arterial hypertension (PAH) is a major progressive form of pulmonary hypertension (PH) with more than 4800 patients in the United States. In the last two decades, many studies have identified numerous genes associated with this disease. However, there is no comprehensive research resource for PAH or other PH types that integrates various genetic studies and their related biological information. Thus, the number of associated genes, and their strength of evidence, is unclear. In this study, we tested the hypothesis that a web-based knowledgebase could be used to develop a biological map of highly interrelated, functionally important genes in PAH. We developed the pulmonary arterial hypertension knowledgebase (PAHKB, ), a comprehensive database with a user-friendly web interface. PAHKB extracts genetic data from all available sources, including those from association studies, genetic mutation, gene expression, animal model, supporting literature, various genomic annotations, gene networks, cellular and regulatory pathways, as well as microRNAs. Moreover, PAHKB provides online tools for data browsing and searching, data integration, pathway graphical presentation, and gene ranking. In the current release, PAHKB contains 341 human PH-related genes (293 protein coding and 48 non-coding genes) curated from over 1000 PubMed abstracts. Based on the top 39 ranked PAH-related genes in PAHKB, we constructed a core biological map. This core map was enriched with the TGF-beta signaling pathway, focal adhesion, cytokine-cytokine receptor interaction, and MAPK signaling. In addition, the reconstructed map elucidates several novel cancer signaling pathways, which may provide clues to support the application of anti-cancer therapeutics to PAH. In summary, we have developed a system for the identification of core PH-related genes and identified critical signaling pathways that may be relevant to PAH pathogenesis. This system can be easily applied to other pulmonary diseases.
    Molecular BioSystems 01/2014; · 3.35 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The Minimum Information About a Biofilm Experiment (MIABiE) initiative has arisen from the need to find an adequate and scientifically sound way to control the quality of the documentation accompanying the public deposition of biofilm-related data, particularly those obtained using high-throughput devices and techniques. Thereby, the MIABiE consortium has initiated the identification and organisation of a set of modules containing the minimum information that needs to be reported to guarantee the interpretability and independent verification of experimental results, and their integration with knowledge coming from other fields. MIABiE does not intend to propose specific standards on how biofilms experiments should be performed, because it is acknowledged that specific research questions require specific conditions which may deviate from any standardization. Instead, MIABiE presents guidelines about the data to be recorded and published in order for the procedure and results to be easily and unequivocally interpreted and reproduced. Overall, MIABiE opens up the discussion about a number of particular areas of interest and attempts to achieve a broad consensus about which biofilm data and metadata should be reported in scientific journals in a systematic, rigorous and understandable manner. This article is protected by copyright. All rights reserved.
    Pathogens and disease. 01/2014;

Full-text (2 Sources)

Available from
Nov 6, 2012