7-T MR—From research to clinical applications?

Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
NMR in Biomedicine (Impact Factor: 3.04). 05/2012; 25(5):695-716. DOI: 10.1002/nbm.1794
Source: PubMed


Over 20,000 MR systems are currently installed worldwide and, although the majority operate at magnetic fields of 1.5 T and below (i.e. about 70%), experience with 3-T (in high-field clinical diagnostic imaging and research) and 7-T (research only) human MR scanners points to a future in functional and metabolic MR diagnostics. Complementary to previous studies, this review attempts to provide an overview of ultrahigh-field MR research with special emphasis on emerging clinical applications at 7 T. We provide a short summary of the technical development and the current status of installed MR systems. The advantages and challenges of ultrahigh-field MRI and MRS are discussed with special emphasis on radiofrequency inhomogeneity, relaxation times, signal-to-noise improvements, susceptibility effects, chemical shifts, specific absorption rate and other safety issues. In terms of applications, we focus on the topics most likely to gain significantly from 7-T MR, i.e. brain imaging and spectroscopy and musculoskeletal imaging, but also body imaging, which is particularly challenging. Examples are given to demonstrate the advantages of susceptibility-weighted imaging, time-of-flight MR angiography, high-resolution functional MRI, (1)H and (31)P MRSI in the human brain, sodium and functional imaging of cartilage and the first results (and artefacts) using an eight-channel body array, suggesting future areas of research that should be intensified in order to fully explore the potential of 7-T MR systems for use in clinical diagnosis.

Download full-text


Available from: Ewald Moser, Oct 05, 2015
83 Reads
  • Source
    • "In particular, an imperfect spatial homogeneity of the static magnetic field B 0 is the main cause of slow intensity variations across the imaged volume when the MR field strength is relatively low. At higher MR field strengths the contribution of B 0 will diminish as the other effects, as for example tissue-dependent distortions produced by MR gradients, will start to become much more significant and not behave in a manner that suits the INU correction methods assumptions (Bernstein et al. 2006; Moser et al. 2012; Umutlu et al. 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The correction of intensity non-uniformity (INU) in magnetic resonance (MR) images is extremely important to ensure both within-subject and across-subject reliability. Here we tackled the problem of objectively comparing INU correction techniques for T1-weighted images, which are the most commonly used in structural brain imaging. We focused our investigations on the methods integrated in widely used software packages for MR data analysis: FreeSurfer, BrainVoyager, SPM and FSL. We used simulated data to assess the INU fields reconstructed by those methods for controlled inhomogeneity magnitudes and noise levels. For each method, we evaluated a wide range of input parameters and defined an enhanced configuration associated with best reconstruction performance. By comparing enhanced and default configurations, we found that the former often provide much more accurate results. Accordingly, we used enhanced configurations for a more objective comparison between methods. For different levels of INU magnitude and noise, SPM and FSL, which integrate INU correction with brain segmentation, generally outperformed FreeSurfer and BrainVoyager, whose methods are exclusively dedicated to INU correction. Nonetheless, accurate INU field reconstructions can be obtained with FreeSurfer on images with low noise and with BrainVoyager for slow and smooth inhomogeneity profiles. Our study may prove helpful for an accurate selection of the INU correction method to be used based on the characteristics of actual MR data.
    Neuroinformatics 08/2015; DOI:10.1007/s12021-015-9277-2 · 2.83 Impact Factor
  • Source
    • "Clearly, our initial study is not without some limitations. With increasing field strength, the Larmor wavelength is reduced to approximately 15 cm at 7 T, provoking significant B1-field signal alterations and signal drop outs in large cross-sectional imaging [13]. These artifacts could be reduced in this trial with static RF shimming, pooling the majority of signal voids to a periaortal focus. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives Aim of the study was to assess the feasibility and to compare three non-enhanced T1-weighted (w) sequences for liver vessel imaging at 7 Tesla (T). Material and Methods 12 healthy volunteers were examined on a 7 T whole-body MR-system. The following non-enhanced sequences were acquired: T1w 2D FLASH, T1w 3D FLASH and Time of flight (TOF)-MRA. Qualitative image analysis was performed by two radiologists including over all image quality as well as vessel delineation of the liver arteries, liver veins and portal vein and the presence of artifacts using a five-point scale (5 = excellent vessel delineation to 1 = non-diagnostic). Contrast ratios (CR), SNR und CNR of the above named vessels in correlation to adjacent liver tissue were calculated for quantitative assessment. For statistical analysis, a Wilcoxon Rank Test was applied. Results All three sequences provided a homogenous hyperintense delineation of the assessed liver vessels. Qualitative image analysis demonstrated the superiority of TOF-MRA, providing best overall image quality (TOF 4.17, 2D FLASH 3.42, 3D FLASH 3.46; p<0.01) as well as highest image quality values for all analyzed liver vessel segments. TOF-MRA was least impaired by B1 inhomogeneity (4.13) and susceptibility artifacts (4.63) out of all three sequences (p<0.01). Quantitative image analysis confirmed the superiority of TOF MRA showing significant higher CR values for all liver vessels (e.g. right hepatic artery TOF 0.47, 2D FLASH 0.09, 3D FLASH 0.11 with p = 0.02 and 0.01, respectively). Providing the lowest standard deviation in noise, TOF showed highest values for SNR and CNR. Conclusions Non-enhanced T1w imaging in general and TOF MRA in particular, appear to be promising techniques for high quality non-enhanced liver vessel assessment at 7 T.
    PLoS ONE 06/2014; 9(6):e97465. DOI:10.1371/journal.pone.0097465 · 3.23 Impact Factor
  • Source
    • "Magnetic resonance imaging (MRI) at ultrahigh magnetic field strength (B0 ≥ 7 T) is a powerful means to assess non-invasively normal and abnormal brain tissue with high spatial resolution (Li et al., 2006; Duyn et al., 2007; Deistung et al., 2008; Trampel et al., 2011; Moser et al., 2012; Turner, 2012, 2013; Eichner et al., 2013; Marques and Gruetter, 2013). MRI provides a variety of qualitative and quantitative tissue contrasts, mainly reflecting nuclear relaxation (T1, T2, and "
    [Show abstract] [Hide abstract]
    ABSTRACT: The human brainstem, which comprises a multitude of axonal nerve fibers and nuclei, plays an important functional role in the human brain. Depicting its anatomy non-invasively with high spatial resolution may thus in turn help to better relate normal and pathological anatomical variations to medical conditions as well as neurological and peripheral functions. We explored the potential of high-resolution magnetic resonance imaging (MRI) at 7 T for depicting the intricate anatomy of the human brainstem in vivo by acquiring and generating images with multiple contrasts: T 2-weighted images, quantitative maps of longitudinal relaxation rate (R 1 maps) and effective transverse relaxation rate ([Formula: see text] maps), magnetic susceptibility maps, and direction-encoded track-density images. Images and quantitative maps were compared with histological stains and anatomical atlases to identify nerve nuclei and nerve fibers. Among the investigated contrasts, susceptibility maps displayed the largest number of brainstem structures. Contrary to R 1 maps and T 2-weighted images, which showed rather homogeneous contrast, [Formula: see text] maps, magnetic susceptibility maps, and track-density images clearly displayed a multitude of smaller and larger fiber bundles. Several brainstem nuclei were identifiable in sections covering the pons and medulla oblongata, including the spinal trigeminal nucleus and the reticulotegmental nucleus on magnetic susceptibility maps as well as the inferior olive on R 1, [Formula: see text], and susceptibility maps. The substantia nigra and red nuclei were visible in all contrasts. In conclusion, high-resolution, multi-contrast MR imaging at 7 T is a versatile tool to non-invasively assess the individual anatomy and tissue composition of the human brainstem.
    Frontiers in Human Neuroscience 10/2013; 7:710. DOI:10.3389/fnhum.2013.00710 · 2.99 Impact Factor
Show more