7-T MR--from research to clinical applications?

Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
NMR in Biomedicine (Impact Factor: 3.56). 05/2012; 25(5):695-716. DOI: 10.1002/nbm.1794
Source: PubMed

ABSTRACT Over 20,000 MR systems are currently installed worldwide and, although the majority operate at magnetic fields of 1.5 T and below (i.e. about 70%), experience with 3-T (in high-field clinical diagnostic imaging and research) and 7-T (research only) human MR scanners points to a future in functional and metabolic MR diagnostics. Complementary to previous studies, this review attempts to provide an overview of ultrahigh-field MR research with special emphasis on emerging clinical applications at 7 T. We provide a short summary of the technical development and the current status of installed MR systems. The advantages and challenges of ultrahigh-field MRI and MRS are discussed with special emphasis on radiofrequency inhomogeneity, relaxation times, signal-to-noise improvements, susceptibility effects, chemical shifts, specific absorption rate and other safety issues. In terms of applications, we focus on the topics most likely to gain significantly from 7-T MR, i.e. brain imaging and spectroscopy and musculoskeletal imaging, but also body imaging, which is particularly challenging. Examples are given to demonstrate the advantages of susceptibility-weighted imaging, time-of-flight MR angiography, high-resolution functional MRI, (1)H and (31)P MRSI in the human brain, sodium and functional imaging of cartilage and the first results (and artefacts) using an eight-channel body array, suggesting future areas of research that should be intensified in order to fully explore the potential of 7-T MR systems for use in clinical diagnosis.

  • 08/2014; 2(8). DOI:10.1007/s40134-014-0061-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: At ultra-high magnetic fields, such as 7T, MR imaging can noninvasively visualize the brain in unprecedented detail and through enhanced contrast mechanisms. The increased SNR and enhanced contrast available at 7T enable higher resolution anatomic and vascular imaging. Greater spectral separation improves detection and characterization of metabolites in spectroscopic imaging. Enhanced blood oxygen level-dependent contrast affords higher resolution functional MR imaging. Ultra-high-field MR imaging also facilitates imaging of nonproton nuclei such as sodium and phosphorus. These improved imaging methods may be applied to detect subtle anatomic, functional, and metabolic abnormalities associated with a wide range of neurologic disorders, including epilepsy, brain tumors, multiple sclerosis, Alzheimer disease, and psychiatric conditions. At 7T, however, physical and hardware limitations cause conventional MR imaging pulse sequences to generate artifacts, requiring specialized pulse sequences and new hardware solutions to maximize the high-field gain in signal and contrast. Practical considerations for ultra-high-field MR imaging include cost, siting, and patient experience. © 2015 American Society of Neuroradiology.
    American Journal of Neuroradiology 12/2014; DOI:10.3174/ajnr.A4180 · 3.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-destructive structural evaluation of the osteochondral unit is challenging. Here, the capability of high-field magnetic resonance imaging (μMRI) at 9.4 Tesla (T) was explored to examine osteochondral repair ex vivo in a preclinical large animal model. A specific aim of this study was to detect recently described alterations of the subchondral bone associated with cartilage repair. Osteochondral samples of medial femoral condyles from adult ewes containing full-thickness articular cartilage defects treated with marrow stimulation were obtained after 6 month in vivo and scanned in a 9.4 T μMRI. Ex vivo imaging of small osteochondral samples (typical volume: 1-2 cm(3)) at μMRI was optimised by variation of repetition time (TR), time echo (TE), flip angle (FA), spatial resolution and number of excitations (NEX) from standard MultiSliceMultiEcho (MSME) and three-dimensional (3D) spoiled GradientEcho (SGE) sequences. A 3D SGE sequence with the parameters: TR = 10 ms, TE = 3 ms, FA = 10 °, voxel size = 120 × 120 × 120 μm(3) and NEX = 10 resulted in the best fitting for sample size, image quality, scanning time and artifacts. An isovolumetric voxel shape allowed for multiplanar reconstructions. Within the osteochondral unit articular cartilage, cartilaginous repair tissue and bone marrow could clearly be distinguished from the subchondral bone plate and subarticular spongiosa. Specific alterations of the osteochondral unit associated with cartilage repair such as persistent drill holes, subchondral bone cysts, sclerosis of the subchondral bone plate and of the subarticular spongiosa and intralesional osteophytes were precisely detected. High resolution, non-destructive ex vivo analysis of the entire osteochondral unit in a preclinical large animal model that is sufficient for further analyses is possible using μMRI at 9.4 T. In particular, 9.4 T is capable of accurately depicting alterations of the subchondral bone that are associated with osteochondral repair.
    BMC Musculoskeletal Disorders 04/2015; 16(1):91. DOI:10.1186/s12891-015-0543-0 · 1.90 Impact Factor


Available from
May 20, 2014