Novel signaling mechanisms in the ovary during oocyte maturation and ovulation.

Center for Reproductive Sciences, Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, United States.
Molecular and Cellular Endocrinology (Impact Factor: 4.24). 11/2011; 356(1-2):65-73. DOI: 10.1016/j.mce.2011.11.002
Source: PubMed

ABSTRACT During the peri-ovulatory period, the gonadotropin LH triggers major changes in both the somatic and germ cell compartments of the ovarian follicle. The oocyte completes the meiotic cell cycle to become a fertilizable egg, and dramatic changes in gene expression and secretion take place in the somatic compartment of the follicle in preparation for follicular rupture and oocyte release. The concerted changes are regulated by activation of intracellular signaling pathways as well as paracrine and autocrine regulatory loops. This review will provide a summary of the current knowledge of the molecular events triggered by LH focusing mostly on the signaling pathways required for oocyte maturation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Follicular fluid is a unique biological fluid in which the critical events of oocyte and follicular maturation and somatic cell-germ cell communication occur. Because of the intimate proximity of follicular fluid to the maturing oocyte, this fluid provides a unique window into the processes occurring during follicular maturation. A thorough identification of the specific components within follicular fluid may provide a better understanding of intrafollicular signaling, as well as reveal potential biomarkers of oocyte health for women undergoing assisted reproductive treatment. In this study, we used high and low pH HPLC peptide separations followed by mass spectrometry to perform a comprehensive proteomic analysis of human follicular fluid from healthy ovum donors. Next, using samples from a second set of patients, an isobaric mass tagging strategy for quantitative analysis was used to identify proteins with altered abundances after hCG treatment. A total of 742 follicular fluid proteins were identified in healthy ovum donors, including 413 that have not been previously reported. The proteins belong to diverse functional groups including insulin growth factor and insulin growth factor binding protein families, growth factor and related proteins, receptor signaling, defense/immunity, anti-apoptotic proteins, matrix metalloprotease related proteins, and complement activity. In a quantitative analysis, follicular fluid samples from age-matched women undergoing in vitro fertilization oocyte retrieval were compared and 17 follicular fluid proteins were found at significantly altered levels (p < 0.05) between pre-hCG and post-hCG samples. These proteins belong to a variety of functional processes, including protease inhibition, inflammation, and cell adhesion. This database of FF proteins significantly extends the known protein components present during the peri-ovulatory period and provides a useful basis for future studies comparing follicular fluid proteomes in various fertility, disease, and environmental exposure conditions. We identified 17 differentially expressed proteins after hCG treatment and together these data showed the feasibility for defining biomarkers that illuminate how the ovarian follicle microenvironment is altered in various infertility-related conditions.
    Clinical Proteomics 01/2015; 12(1):5. DOI:10.1186/s12014-015-9077-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: In mammalian ovaries, a fixed population of primordial follicles forms during the perinatal stage and the oocytes contained within are arrested at the dictyate stage of meiotic prophase I. In the current study, we provide evidence that the level of cyclic AMP (cAMP) in oocytes regulates oocyte meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary. Our results show that the early meiotic development of oocytes is closely correlated with increased levels of intra-oocyte cAMP. Inhibiting cAMP synthesis in fetal ovaries delayed oocyte meiotic progression and inhibited the disassembly and degradation of synaptonemal complex protein 1. In addition, inhibiting cAMP synthesis in in vitro cultured fetal ovaries prevented primordial follicle formation. Finally, using an in situ oocyte chromosome analysis approach, we found that the dictyate arrest of oocytes is essential for primordial follicle formation under physiological conditions. Taken together, these results suggest a role for cAMP in early meiotic development and primordial follicle formation in the mouse ovary. © 2015. Published by The Company of Biologists Ltd.
    Development 01/2014; 142(2):343-351. DOI:10.1242/dev.112755 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oocytes progressively acquire the competence to support embryo development as oogenesis proceeds with ovarian folliculogenesis. The objectives of this study were to investigate oocyte-secreted factor (OSF) participation in the development of somatic cell epidermal growth factor (EGF) responsiveness associated with oocyte developmental competence. A well-established porcine model was employed using oocytes from small (<4mm) versus medium sized (>4mm) antral follicles, representing low versus moderate developmental competence, respectively. Cumulus-oocyte complexes (COCs) were treated in vitro with inducers of oocyte maturation and cumulus cell functions and oocyte developmental competence were assessed. COCs from small follicles responded to FSH but, unlike COCs from larger follicles, were incapable of responding to EGF family growth factors known to mediate oocyte maturation in vivo, exhibiting perturbed cumulus expansion and expression of associated transcripts (HAS2, TNFAIP6). Low and moderate competence COCs expressed equivalent levels of EGF receptor (EGFR) mRNA however the former had less total EGFR protein leading to failed activation of phospho-EGFR and phospho-ERK1/2, despite equivalent total ERK1/2 protein levels. Native OSFs from moderate, but not from low, competence oocytes established EGF responsiveness in low competence COCs. Four candidate recombinant OSFs failed to mimic the actions of native OSFs in regulating cumulus expansion. Treatment with OSFs and EGF enhanced oocyte competence but only of the low competence COCs. These data suggest that developmental acquisition by the oocyte of capacity to regulate EGF responsiveness in the oocyte's somatic cells is a major milestone in the oocyte's developmental program and contributes to coordinated oocyte and somatic cell development.
    Endocrinology 04/2015; DOI:10.1210/en.2014-1884 · 4.64 Impact Factor