Identification and functional annotation of GWAS risk SNPs

Keck School of Medicince, University of Southern California, Los Angeles, CA, USA.
Cell cycle (Georgetown, Tex.) (Impact Factor: 4.57). 12/2011; 10(23):3995-6. DOI: 10.4161/cc.10.23.18237
Source: PubMed


Comment on: Glinskii AB, et al. Cell Cycle 2011; 10:3016-30.

1 Read
  • Source
    Nature Genetics 06/2011; 43(6):513-8. DOI:10.1038/ng.840 · 29.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanistic relevance of intergenic disease-associated genetic loci (IDAGL) containing highly statistically significant disease-linked SNPs remains unknown. Here, we present experimental and clinical evidence supporting the importantance of the role of IDAGL in human diseases. A targeted RT-PCR screen coupled with sequencing of purified PCR products detects widespread transcription at multiple IDAGL and identifies 96 small noncoding trans-regulatory RNAs of ~100-300 nt in length containing SNPs (snpRNAs) associated with 21 common disorders. Multiple independent lines of experimental evidence support functionality of snpRNAs by documenting their cell type-specific expression and evolutionary conservation of sequences, genomic coordinates and biological effects. Chromatin state signatures, expression profiling experiments and luciferase reporter assays demonstrate that many IDAGL are Polycomb-regulated long-range enhancers. Expression of snpRNAs in human and mouse cells markedly affects cellular behavior and induces allele-specific clinically relevant phenotypic changes: NLRP1-locus snpRNAs rs2670660 exert regulatory effects on monocyte/macrophage transdifferentiation, induce prostate cancer (PC) susceptibility snpRNAs and transform low-malignancy hormone-dependent human PC cells into highly malignant androgen-independent PC. Q-PCR analysis and luciferase reporter assays demonstrate that snpRNA sequences represent allele-specific "decoy" targets of microRNAs that function as SNP allele-specific modifiers of microRNA expression and activity. We demonstrate that trans-acting RNA molecules facilitating resistance to androgen depletion (RAD) in vitro and castration-resistant phenotype (CRP) in vivo of PC contain intergenic 8q24-locus SNP variants (rs1447295; rs16901979; rs6983267) that were recently linked with increased risk of PC. Q-PCR analysis of clinical samples reveals markedly increased and highly concordant (r = 0.896; p < 0.0001) snpRNA expression levels in tumor tissues compared with the adjacent normal prostate [122-fold and 45-fold in Gleason 7 tumors (p = 0.03); 370-fold and 127-fold in Gleason 8 tumors (p = 0.0001) for NLRP1-locus and 8q24-locus snpRNAs, respectively]. Our experiments indicate that RAD and CR phenotype of human PC cells can be triggered by ncRNA molecules transcribed from the NLRP1-locus intergenic enhancer at 17p13 and by downstream activation of the 8q24-locus snpRNAs. Our results define the IDAGL at 17p13 and 8q24 as candidate regulatory loci of RAD and CR phenotypes of PC, reveal previously unknown molecular links between the innate immunity/inflammasome system and development of hormone-independent PC and identify novel molecular and genetic targets with diagnostic and therapeutic potentials, exploration of which should be highly beneficial for personalized clinical management of PC.
    Cell cycle (Georgetown, Tex.) 10/2011; 10(20):3571-97. DOI:10.4161/cc.10.20.17842 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meta-analysis of genomic coordinates of SNP variations identified in genome-wide association studies (GWAS) of up to 712,253 samples (comprising 221,158 disease cases, 322,862 controls, and 168,233 case/control subjects of obesity GWAS) reveals that 39% of SNPs associated with 22 common human disorders are located within intergenic regions. Chromatin-state maps based on H3K4me3-H3K36me3 signatures show that many intergenic disease-linked SNPs are located within the boundaries of the K4-K36 domains, suggesting that SNP-harboring genomic regions are transcribed. Here we report identification of 13 trans-regulatory RNAs (transRNAs) 100 to 200 nucleotides in length containing intergenic SNP sequences associated with Crohn's disease, rheumatoid arthritis, type 1 diabetes, vitiligo, hypertension and multiple types of epithelial malignancies (prostate, breast, ovarian and colorectal cancers). We demonstrate that NALP1 loci intergenic SNP sequence, rs2670660, is expressed in human cells and may contribute to clinical manifestations of autoimmune and autoimflammatory phenotypes by generating distinct allelic variants of transRNAs. Stable expression of allele-specific sense and anti-sense variants of transRNAs markedly alters cellular behavior, affect cell cycle progression, and interfere with monocyte/macrophage transdifferentiation. On a molecular level, forced expression of allele-specific sense and anti-sense variants of transRNAs asserts allele-specific genome-wide effects on abundance of hundreds microRNAs and mRNAs. Using lentiviral gene transfer, microarray and Q-RT-PCR technologies, we identify rs2670660 allele-specific gene expression signatures (GES) which appear useful for detecting the activated states of innate immunity/inflammasome pathways in approximately 700 clinical samples from 185 control subjects and 350 patients diagnosed with nine common human disorders, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, Huntington disease, autism, Alzheimer disease, obesity, prostate and breast cancers. Microarray analysis of clinical samples demonstrates that rs2670660 allele-specific GES are engaged in patients' peripheral blood mononuclear cells (PBMC) which encounter pathological conditions in coherent tissues of a human body during immune surveillance and homeostasis monitoring. These data indicate that expression of transRNAs encoded by specific intergenic sequences can trigger activation of innate immunity/inflammasome pathways and contribute to clinical development of autoinflammatory and autoimmune syndromes. Documented in this work single-base substitution-driven molecular and biological antagonisms of intergenic SNP-containing transRNAs suggest a guiding mechanism of selection and retention of phenotype-compatible intergenic variations during evolution. According to this model, random genetic variations which generate transRNAs asserting antagonistic phenotype-altering effects compared to ancestral alleles will be selected and retained as SNP variants.
    Cell cycle (Georgetown, Tex.) 12/2009; 8(23):3925-42. DOI:10.4161/cc.8.23.10113 · 4.57 Impact Factor


1 Read
Available from