Fractone-associated N-sulfated heparan sulfate shows reduced quantity in BTBR T plus tf/J mice: A strong model of autism

Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA.
Behavioural brain research (Impact Factor: 3.39). 11/2011; 228(2):247-53. DOI: 10.1016/j.bbr.2011.11.004
Source: PubMed

ABSTRACT BTBR T+tf/J (BTBR) mice show abnormal social, communicatory, and repetitive/stereotyped behaviors paralleling many of the symptoms of autism spectrum disorders. BTBR also show agenesis of the corpus callosum (CC) suggesting major perturbations of growth or guidance factors in the dorsal forebrain [1]. Heparan sulfate (HS) is a polysaccaride found in the brain and other animal tissues. It binds to a wide variety of ligands and through these ligands modulates a number of biological processes, including cell proliferation and differentiation, migration and guidance. It is aggregated on fractal-like structures (fractones) in the subventricular zone (SVZ), that may be visualized by laminin immunoreactivity (LAM-ir), as well as by HS immunoreactivity (HS-ir). We report that the lateral ventricles of BTBR mice were drastically reduced in area compared to C57BL/6J (B6) mice while the BTBR SVZ was significantly shorter than that of B6. In addition to much smaller fractones for BTBR, both HS and LAM-ir associated with fractones were significantly reduced in BTBR, and their anterior-posterior distributions were also altered. Finally, the ratio of HS to LAM in individual fractones was significantly higher in BTBR than in B6 mice. These data, in agreement with other findings linking HS to callosal development, suggest that variations in the quantity and distribution of HS in the SVZ of the lateral ventricles may be important modulators of the brain structural abnormalities of BTBR mice, and, potentially, contribute to the behavioral pathologies of these animals.


Available from: Brandon L Pearson, May 11, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent (A-D) developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal A-D neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic fragile X syndrome (FXS), a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in A-D critical period processes. The fragile X mental retardation protein (FMRP) is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the A-D remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor A-D processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of A-D mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.
    Frontiers in Cellular Neuroscience 02/2014; 8:30. DOI:10.3389/fncel.2014.00030 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteoglycans (PGs) regulate diverse functions in the central nervous system (CNS) by interacting with a number of growth factors, matrix proteins, and cell sur-face molecules. Heparan sulfate (HS) and chondroitin sulfate (CS) are two major glycosaminoglycans present in the PGs of the CNS. The functionality of these PGs is to a large extent dictated by the fine sulfation patterns present on their glycosaminoglycan (GAG) chains. In the past 15 years, there has been a significant expansion in our knowledge on the role of HS and CS chains in various neurological processes, such as neuronal growth, regen-eration, plasticity, and pathfinding. However, defining the relation between distinct sulfation patterns of the GAGs and their functionality has thus far been difficult. With the emergence of novel tools for the synthesis of defined GAG structures, and techniques for their characterization, we are now in a better position to explore the structure-function relation of GAGs in the context of their sulfation patterns. In this review, we discuss the importance of GAGs on CNS development, injury, and disorders with an emphasis on their sulfation patterns. Finally, we outline several GAG-based therapeutic strategies to exploit GAG chains for ameliorating various CNS disorders.
    Biomolecular concepts 03/2013; 4(3):233-257. DOI:10.1515/bmc-2012-0042
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Currently, there are about 20 antiepileptic drugs on market. Still, seizures in about 30% of patients with epilepsy are not adequately controlled, or the drugs cause quality-of-life-compromising adverse events. Importantly, there are no treatments to combat epileptogenesis, a process that leads to the development of epilepsy and its progression. To fill the gaps in the treatment of epilepsy, there is an urgent need for identification of novel treatment targets. Data emerging over the recent years have shown that different components of the extracellular matrix (ECM) contribute to many components of tissue reorganization during epileptogenesis and the ECM is also a major regulator of synaptic excitability. Here, we review the role of urokinase-type plasminogen activator receptor interactome, matrix metalloproteinases, tenascin-R, and LGI1 in epileptogenesis and ictogenesis. Moreover, the role of the ECM in epilepsy-related comorbidities is reviewed. As there is active development of new imaging methods, we also summarize the data available on imaging of the ECM in epilepsy.
    Progress in brain research 01/2014; 214:229-62. DOI:10.1016/B978-0-444-63486-3.00011-6 · 5.10 Impact Factor