Mechanisms for quality control of misfolded transmembrane proteins.

Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
Biochimica et Biophysica Acta (Impact Factor: 4.66). 11/2011; 1818(4):1108-14. DOI: 10.1016/j.bbamem.2011.11.007
Source: PubMed

ABSTRACT To prevent the accumulation of misfolded and aggregated proteins, the cell has developed a complex network of cellular quality control (QC) systems to recognize misfolded proteins and facilitate their refolding or degradation. The cell faces numerous obstacles when performing quality control on transmembrane proteins. Transmembrane proteins have domains on both sides of a membrane and QC systems in distinct compartments must coordinate to monitor the folding status of the protein. Additionally, transmembrane domains can have very complex organization and QC systems must be able to monitor the assembly of transmembrane domains in the membrane. In this review, we will discuss the QC systems involved in repair and degradation of misfolded transmembrane proteins. Also, we will elaborate on the factors that recognize folding defects of transmembrane domains and what happens when misfolded transmembrane proteins escape QC and aggregate. This article is part of a Special Issue entitled: Protein Folding in Membranes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008, I reviewed and proposed a model for our discovery in 2005 that unrefoldable and insoluble proteins could in fact be solubilized in unsalted water. Since then, this discovery has offered us and other groups a powerful tool to characterize insoluble proteins, and we have further addressed several fundamental and disease-relevant issues associated with this discovery. Here I review these results, which are conceptualized into several novel scenarios. 1) Unlike 'misfolded proteins', which still retain the capacity to fold into well-defined structures but are misled to 'off-pathway' aggregation, unrefoldable and insoluble proteins completely lack this ability and will unavoidably aggregate in vivo with ~150 mM ions, thus designated as 'intrinsically insoluble proteins (IIPs)' here. IIPs may largely account for the 'wastefully synthesized' DRiPs identified in human cells. 2) The fact that IIPs including membrane proteins are all soluble in unsalted water, but get aggregated upon being exposed to ions, logically suggests that ions existing in the background play a central role in mediating protein aggregation, thus acting as 'dark mediators'. Our study with 14 salts confirms that IIPs lack the capacity to fold into any well-defined structures. We uncover that salts modulate protein dynamics and anions bind proteins with high selectivity and affinity, which is surprisingly masked by pre-existing ions. Accordingly, I modified my previous model. 3) Insoluble proteins interact with lipids to different degrees. Remarkably, an ALS-causing P56S mutation transforms the β-sandwich MSP domain into a helical integral membrane protein. Consequently, the number of membrane-interacting proteins might be much larger than currently recognized. To attack biological membranes may represent a common mechanism by which aggregated proteins initiate human diseases. 4) Our discovery also implies a solution to the 'chicken-and-egg paradox' for the origin of primitive membranes embedded with integral membrane proteins, if proteins originally emerged in unsalted prebiotic media.
    F1000Research. 01/2013; 2:94.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular chaperones triage misfolded proteins via action as substrate selectors for quality control (QC) machines that fold or degrade clients. Herein, the endoplasmic reticulum (ER)-associated Hsp40 JB12 is reported to participate in partitioning mutant conformers of gonadotropin-releasing hormone receptor (GnRHR), a G protein-coupled receptor, between ER-associated degradation (ERAD) and an ERQC autophagy pathway. ERQC autophagy degrades E90K-GnRHR because pools of its partially folded and detergent-soluble degradation intermediates are resistant to ERAD. S168R-GnRHR is globally misfolded and disposed of via ERAD, but inhibition of p97, the protein retrotranslocation motor, shunts S168R-GnRHR from ERAD to ERQC autophagy. Partially folded and grossly misfolded forms of GnRHR associate with JB12 and Hsp70. Elevation of JB12 promotes ERAD of S168R-GnRHR, with E90K-GnRHR being resistant. E90K-GnRHR elicits association of the Vps34 autophagy initiation complex with JB12. Interaction between ER-associated Hsp40s and the Vps34 complex permits the selective degradation of ERAD-resistant membrane proteins via ERQC autophagy.
    Molecular cell 03/2014; · 14.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic amyloidoses result from the aberrant secretion of destabilized, amyloidogenic proteins to the serum where they aggregate into proteotoxic soluble aggregates and amyloid fibrils. Few therapeutic approaches exist to attenuate extracellular pathologic aggregation of amyloidogenic proteins, necessitating the development of new strategies to intervene in these devastating disorders. We show that stress-independent activation of the Unfolded Protein Response-associated transcription factor ATF6 increases ER quality control stringency for the amyloidogenic protein transthyretin (TTR), preferentially reducing secretion of disease-associated TTR variants to an extent corresponding to the variants' destabilization of the TTR tetramer. This decrease in destabilized TTR variant secretion attenuates extracellular, concentration-dependent aggregation of amyloidogenic TTRs into soluble aggregates commonly associated with proteotoxicity in disease. Collectively, our results indicate that increasing ER quality control stringency through ATF6 activation is a strategy to attenuate pathologic aggregation of a destabilized, amyloidogenic protein, revealing a potential approach to intervene in systemic amyloid disease pathology. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Chemistry & biology. 11/2014; 21(11):1564-74.

Full-text (2 Sources)

Available from
Jun 10, 2014