Article

Mechanisms for quality control of misfolded transmembrane proteins.

Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
Biochimica et Biophysica Acta (Impact Factor: 4.66). 11/2011; 1818(4):1108-14. DOI: 10.1016/j.bbamem.2011.11.007
Source: PubMed

ABSTRACT To prevent the accumulation of misfolded and aggregated proteins, the cell has developed a complex network of cellular quality control (QC) systems to recognize misfolded proteins and facilitate their refolding or degradation. The cell faces numerous obstacles when performing quality control on transmembrane proteins. Transmembrane proteins have domains on both sides of a membrane and QC systems in distinct compartments must coordinate to monitor the folding status of the protein. Additionally, transmembrane domains can have very complex organization and QC systems must be able to monitor the assembly of transmembrane domains in the membrane. In this review, we will discuss the QC systems involved in repair and degradation of misfolded transmembrane proteins. Also, we will elaborate on the factors that recognize folding defects of transmembrane domains and what happens when misfolded transmembrane proteins escape QC and aggregate. This article is part of a Special Issue entitled: Protein Folding in Membranes.

0 Bookmarks
 · 
77 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Selenoprotein S (SelS, VIMP) is an intrinsically disordered membrane enzyme that provides protection against reactive oxidative species. SelS is a member of the endoplasmic reticulum associated protein degradation pathway but its precise enzymatic function is unknown. Since it contains the rare amino acid selenocysteine, it belongs to the family of selenoproteins, which are typically oxidoreductases. Its exact enzymatic function is key to understanding how the cell regulates the response to oxidative stress and thus influences human health and aging. In order to identify its enzymatic function, we have isolated the selenocysteine-containing enzyme by relying on the aggregation of forms that do not have this reactive residue. That allows us to establish that SelS is primarily a thioredoxin-dependent reductase. It is capable of reducing hydrogen peroxide but is not an efficient or broad-spectrum peroxidase. Only the selenocysteine-containing enzyme is active. In addition, the reduction potential of SelS was determined to be -234 mV using electrospray ionization mass spectrometry. This value agrees with SelS being a partner of thioredoxin. Based on this information, SelS can directly combat reactive oxygen species but is also likely to participate in a signaling pathway, via a yet unidentified substrate.
    Biochemistry 04/2013; · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular chaperones triage misfolded proteins via action as substrate selectors for quality control (QC) machines that fold or degrade clients. Herein, the endoplasmic reticulum (ER)-associated Hsp40 JB12 is reported to participate in partitioning mutant conformers of gonadotropin-releasing hormone receptor (GnRHR), a G protein-coupled receptor, between ER-associated degradation (ERAD) and an ERQC autophagy pathway. ERQC autophagy degrades E90K-GnRHR because pools of its partially folded and detergent-soluble degradation intermediates are resistant to ERAD. S168R-GnRHR is globally misfolded and disposed of via ERAD, but inhibition of p97, the protein retrotranslocation motor, shunts S168R-GnRHR from ERAD to ERQC autophagy. Partially folded and grossly misfolded forms of GnRHR associate with JB12 and Hsp70. Elevation of JB12 promotes ERAD of S168R-GnRHR, with E90K-GnRHR being resistant. E90K-GnRHR elicits association of the Vps34 autophagy initiation complex with JB12. Interaction between ER-associated Hsp40s and the Vps34 complex permits the selective degradation of ERAD-resistant membrane proteins via ERQC autophagy.
    Molecular cell 03/2014; · 14.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell-surface multiprotein complexes are synthesized in the endoplasmic reticulum (ER), where they undergo cotranslational membrane integration and assembly. The quality control mechanisms that oversee these processes remain poorly understood. We show that less hydrophobic transmembrane (TM) regions derived from several single-pass TM proteins can enter the ER lumen completely. Once mislocalized, they are recognized by the Hsp70 chaperone BiP. In a detailed analysis for one of these proteins, the αβT cell receptor (αβTCR), we show that unassembled ER-lumenal subunits are rapidly degraded, whereas specific subunit interactions en route to the native receptor promote membrane integration of the less hydrophobic TM segments, thereby stabilizing the protein. For the TCR α chain, both complete ER import and subunit assembly depend on the same pivotal residue in its TM region. Thus, membrane integration linked to protein assembly allows cellular quality control of membrane proteins and connects the lumenal ER chaperone machinery to membrane protein biogenesis.
    Molecular cell 08/2013; 51(3):297-309. · 14.61 Impact Factor

Full-text (2 Sources)

View
4 Downloads
Available from
Jun 10, 2014