Article

Mechanisms for quality control of misfolded transmembrane proteins

Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
Biochimica et Biophysica Acta (Impact Factor: 4.66). 11/2011; 1818(4):1108-14. DOI: 10.1016/j.bbamem.2011.11.007
Source: PubMed

ABSTRACT To prevent the accumulation of misfolded and aggregated proteins, the cell has developed a complex network of cellular quality control (QC) systems to recognize misfolded proteins and facilitate their refolding or degradation. The cell faces numerous obstacles when performing quality control on transmembrane proteins. Transmembrane proteins have domains on both sides of a membrane and QC systems in distinct compartments must coordinate to monitor the folding status of the protein. Additionally, transmembrane domains can have very complex organization and QC systems must be able to monitor the assembly of transmembrane domains in the membrane. In this review, we will discuss the QC systems involved in repair and degradation of misfolded transmembrane proteins. Also, we will elaborate on the factors that recognize folding defects of transmembrane domains and what happens when misfolded transmembrane proteins escape QC and aggregate. This article is part of a Special Issue entitled: Protein Folding in Membranes.

Download full-text

Full-text

Available from: Scott A Houck, Jun 03, 2014
0 Followers
 · 
116 Views
  • Source
    • "Accordingly, it is likely that the cell has developed mechanisms of quality control to ensure proper interaction and integration of TM sequences during membrane protein biogenesis. With only a few exceptions (Houck and Cyr, 2012; Lemberg, 2013) little is known if or how intra-membrane assembly steps are linked to mechanisms of cellular quality control in membrane protein biogenesis or if membrane integration itself is scrutinized. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell-surface multiprotein complexes are synthesized in the endoplasmic reticulum (ER), where they undergo cotranslational membrane integration and assembly. The quality control mechanisms that oversee these processes remain poorly understood. We show that less hydrophobic transmembrane (TM) regions derived from several single-pass TM proteins can enter the ER lumen completely. Once mislocalized, they are recognized by the Hsp70 chaperone BiP. In a detailed analysis for one of these proteins, the αβT cell receptor (αβTCR), we show that unassembled ER-lumenal subunits are rapidly degraded, whereas specific subunit interactions en route to the native receptor promote membrane integration of the less hydrophobic TM segments, thereby stabilizing the protein. For the TCR α chain, both complete ER import and subunit assembly depend on the same pivotal residue in its TM region. Thus, membrane integration linked to protein assembly allows cellular quality control of membrane proteins and connects the lumenal ER chaperone machinery to membrane protein biogenesis.
    Molecular cell 08/2013; 51(3):297-309. DOI:10.1016/j.molcel.2013.07.013 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2008, I reviewed and proposed a model for our discovery in 2005 that unrefoldable and insoluble proteins could in fact be solubilized in unsalted water. Since then, this discovery has offered us and other groups a powerful tool to characterize insoluble proteins, and we have further addressed several fundamental and disease-relevant issues associated with this discovery. Here I review these results, which are conceptualized into several novel scenarios. 1) Unlike 'misfolded proteins', which still retain the capacity to fold into well-defined structures but are misled to 'off-pathway' aggregation, unrefoldable and insoluble proteins completely lack this ability and will unavoidably aggregate in vivo with ~150 mM ions, thus designated as 'intrinsically insoluble proteins (IIPs)' here. IIPs may largely account for the 'wastefully synthesized' DRiPs identified in human cells. 2) The fact that IIPs including membrane proteins are all soluble in unsalted water, but get aggregated upon being exposed to ions, logically suggests that ions existing in the background play a central role in mediating protein aggregation, thus acting as 'dark mediators'. Our study with 14 salts confirms that IIPs lack the capacity to fold into any well-defined structures. We uncover that salts modulate protein dynamics and anions bind proteins with high selectivity and affinity, which is surprisingly masked by pre-existing ions. Accordingly, I modified my previous model. 3) Insoluble proteins interact with lipids to different degrees. Remarkably, an ALS-causing P56S mutation transforms the β-sandwich MSP domain into a helical integral membrane protein. Consequently, the number of membrane-interacting proteins might be much larger than currently recognized. To attack biological membranes may represent a common mechanism by which aggregated proteins initiate human diseases. 4) Our discovery also implies a solution to the 'chicken-and-egg paradox' for the origin of primitive membranes embedded with integral membrane proteins, if proteins originally emerged in unsalted prebiotic media.
    03/2013; 2:94. DOI:10.12688/f1000research.2-94.v1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Selenoprotein S (SelS, VIMP) is an intrinsically disordered membrane enzyme that provides protection against reactive oxidative species. SelS is a member of the endoplasmic reticulum associated protein degradation pathway but its precise enzymatic function is unknown. Since it contains the rare amino acid selenocysteine, it belongs to the family of selenoproteins, which are typically oxidoreductases. Its exact enzymatic function is key to understanding how the cell regulates the response to oxidative stress and thus influences human health and aging. In order to identify its enzymatic function, we have isolated the selenocysteine-containing enzyme by relying on the aggregation of forms that do not have this reactive residue. That allows us to establish that SelS is primarily a thioredoxin-dependent reductase. It is capable of reducing hydrogen peroxide but is not an efficient or broad-spectrum peroxidase. Only the selenocysteine-containing enzyme is active. In addition, the reduction potential of SelS was determined to be -234 mV using electrospray ionization mass spectrometry. This value agrees with SelS being a partner of thioredoxin. Based on this information, SelS can directly combat reactive oxygen species but is also likely to participate in a signaling pathway, via a yet unidentified substrate.
    Biochemistry 04/2013; 52(18). DOI:10.1021/bi4001358 · 3.01 Impact Factor
Show more