LSPR biomolecular assay with high sensitivity induced by aptamer-antigen-antibody sandwich complex.

School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore.
Biosensors & bioelectronics (Impact Factor: 5.43). 10/2011; 31(1):567-70. DOI: 10.1016/j.bios.2011.10.047
Source: PubMed

ABSTRACT Herein we demonstrate a sensitive approach for protein detection based on peak shifts of localized surface plasmon resonance (LSPR) induced by aptamer-antigen-antibody sandwich structures. The applicability of the proposed method is demonstrated using human α-thrombin as a model analyte. While the binding of thrombin to its specific receptor, thrombin binding aptamer (TBA) modified on Au nanorods (AuNRs), causes a measurable LSPR shift, a subsequent binding of an anti-thrombin antibody to the captured thrombin can exhibit a nearly 150% amplification in the LSPR response. This enhanced signal essentially leads to an improvement of limit of detection (LOD) by more than one order of magnitude. In addition, the use of TBA as thrombin recognition units makes the biosensor reusable. The feasibility of the proposed method was further exploited by the detection of thrombin in human serum, opening the possibility of a real application for diagnostics and medical investigations.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Spectral shift of localized plasmon resonance scattering of guanine-rich DNA modified single Au nanoparticles is observed under a dark field microscope equipped with a spectrometer. The spectra continuously red-shift with the conformational change of the guanine-rich DNA upon associating with K(+), hemin and the biocatalytic growth of the polymer. The scattering spectrum of single nanoparticles is proved to be sensitive both to a subtle conformational change and the biocatalysis process. 20 mM K(+) or 100 μM H2O2 can trigger a detectable peak shift. The present study paves a new and efficient way to extract chemical information from micro/nanospace.
    Chemical Communications 04/2014; · 6.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aptamers are single-stranded nucleic acids that selectively bind to target molecules. Most aptamers are obtained through a combinatorial biology technique called SELEX. Since aptamers can be isolated to bind to almost any molecule of choice, can be readily modified at arbitrary positions and they possess predictable secondary structures, this platform technology shows great promise in biosensor development. Over the past two decades, more than one thousand papers have been published on aptamer-based biosensors. Given this progress, the application of aptamer technology in biomedical diagnosis is still in a quite preliminary stage. Most previous work involves only a few model aptamers to demonstrate the sensing concept with limited biomedical impact. This Critical Review aims to summarize progress that might enable practical applications of aptamers for biological samples. First, general sensing strategies based on the unique properties of aptamers are summarized. Each strategy can be coupled to various signaling methods. Among these, a few detection methods including fluorescence lifetime, flow cytometry, upconverting nanoparticles, nanoflare technology, magnetic resonance imaging, electronic aptamer-based sensors, and lateral flow devices have been discussed in more detail since they are more likely to work in a complex sample matrix. The current limitations of this field include the lack of high quality aptamers for clinically important targets. In addition, the aptamer technology has to be extensively tested in a clinical sample matrix to establish reliability and accuracy. Future directions are also speculated to overcome these challenges.
    The Analyst 04/2014; · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Localized surface plasmon resonance (LSPR) nanoplasmonic effects allow for label-free, real-time detection of biomolecule binding events on a nanostructured metallic surface with simple optics and sensing tunability. Despite numerous reports on LSPR bionanosensing in the past, no study thus far has applied the technique for a cytokine secretion assay using clinically relevant immune cells from human blood. Cytokine secretion assays, a technique to quantify intercellular-signaling proteins secreted by blood immune cells, allow determination of the functional response of the donor's immune cells, thus providing valuable information about the immune status of the donor. However, implementation of LSPR bionanosensing in cellular functional immunoanalysis based on a cytokine secretion assay poses major challenges primarily owing to its limited sensitivity and a lack of sufficient sample handling capability. In this paper, we have developed a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. Our approach integrates LSPR bionanosensors in an optofluidic platform that permits trapping and stimulation of target immune cells in a microfluidic chamber with optical access for subsequent cytokine detection. The on-chip spatial confinement of the cells is the key to rapidly increasing a cytokine concentration high enough for detection by the LSPR setup, thereby allowing the assay time and sample volume to be significantly reduced. We have successfully applied this approach first to THP-1 cells and then later to CD45 cells isolated directly from human blood. Our LSPR optofluidics device allows for detection of TNF-α secreted from cells as few as 1000, which translates into a nearly 100 times decrease in sample volume than conventional cytokine secretion assay techniques require. We achieved cellular functional immunoanalysis with a minimal blood sample volume (3 μL) and a total assay time 3 times shorter than that of the conventional enzyme-linked immunosorbent assay (ELISA).
    ACS Nano 02/2014; 8(3):2667-2676. · 12.03 Impact Factor