Assembly of the major light-harvesting complex II in lipid nanodiscs.

Section of Biophysics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
Biophysical Journal (Impact Factor: 3.67). 11/2011; 101(10):2507-15. DOI: 10.1016/j.bpj.2011.09.055
Source: PubMed

ABSTRACT Self-aggregation of isolated plant light-harvesting complexes (LHCs) upon detergent extraction is associated with fluorescence quenching and is used as an in vitro model to study the photophysical processes of nonphotochemical quenching (NPQ). In the NPQ state, in vivo induced under excess solar light conditions, harmful excitation energy is safely dissipated as heat. To prevent self-aggregation and probe the conformations of LHCs in a lipid environment devoid from detergent interactions, we assembled LHCII trimer complexes into lipid nanodiscs consisting of a bilayer lipid matrix surrounded by a membrane scaffold protein (MSP). The LHCII nanodiscs were characterized by fluorescence spectroscopy and found to be in an unquenched, fluorescent state. Remarkably, the absorbance spectra of LHCII in lipid nanodiscs show fine structure in the carotenoid and Q(y) region that is different from unquenched, detergent-solubilized LHCII but similar to that of self-aggregated, quenched LHCII in low-detergent buffer without magnesium ions. The nanodisc data presented here suggest that 1), LHCII pigment-protein complexes undergo conformational changes upon assembly in nanodiscs that are not correlated with downregulation of its light-harvesting function; and 2), these effects can be separated from quenching and aggregation-related phenomena. This will expand our present view of the conformational flexibility of LHCII in different microenvironments.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To protect the photosynthetic apparatus against photo-damage in high sunlight, the photosynthetic antenna of oxygenic organisms can switch from a light-harvesting to a photoprotective mode through the process of Non-Photochemical Quenching (NPQ). There is growing evidence that light-harvesting proteins of photosystem II participate in photoprotection by a built-in capacity to switch their conformation between light-harvesting and energy-dissipating states. Here we applied high-resolution Magic-Angle Spinning NMR on uniformly 13C-enriched major light-harvesting complex II (LHCII) of Chlamydomonas reinhardtii in active or quenched states. Our results reveal that the switch into a dissipative state is accompanied by subtle changes in the chlorophyll (Chl) a ground-state electronic structures that affect their NMR responses, particularly for the macrocycle 13C4, 13C5 and 13C6 carbon atoms. Inspection of the LHCII X-ray structures shows that of the Chl molecules in the terminal emitter domain, where excited-state energy accumulates prior to further transfer or dissipation, the C4, 5 and 6 atoms are in closest proximity to lutein; supporting quenching mechanisms that involve altered Chl-lutein interactions in the dissipative state. In addition the observed changes could represent altered interactions between Chla and neoxanthin, which alters its configuration under NPQ conditions. The Chls appear to have increased dynamics in unquenched, detergent-solubilized LHCII. Our work demonstrates that solid-state NMR is applicable to investigate high-resolution structural details of light-harvesting proteins in varied functional conditions, and represents a valuable tool to address their molecular plasticity associated with photoprotection.
    Biochimica et Biophysica Acta 03/2013; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The trimeric light-harvesting complexes II (LHCII) of plants and green algae are pigment-protein complexes involved in light harvesting and photoprotection. Different conformational states have been proposed to be responsible for their different functions. At present, detergent-solubilized LHCII is used as a model for the "light-harvesting conformation", whereas the "quenched conformation" is mimicked by LHCII aggregates. However, none of these conditions seem to perfectly reproduce the properties of LHCII in vivo. In addition, several monomeric LHC complexes are not fully stable in detergent. There is thus a need to find conditions that allow analyzing LHCs in vitro in stable and, hopefully, more native-like conformations. Here, we report a study of LHCII, the major antenna complex of plants, in complex with amphipols. We have trapped trimeric LHCII and monomeric Lhcb1 with either polyanionic or non-ionic amphipols and studied the effect of these polymers on the properties of the complexes. We show that, as compared to detergent solutions, amphipols have a stabilizing effect on LHCII. We also show that the average fluorescence lifetime of LHCII trapped in an anionic amphipol is ~30 % shorter than in α-dodecylmaltoside, due to the presence of a conformation with 230-ps lifetime that is not present in detergent solutions.
    Journal of Membrane Biology 08/2014; · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Light-harvesting antennae of the LHC family form transmembrane three-helix bundles of which two helices are interlocked by conserved arginine-glutamate (Arg-Glu) ion pairs that form ligation sites for chlorophylls (Chls). The antenna proteins of photosystem II have an intriguing dual function: in excess light they can switch their conformation from a light-harvesting into a photoprotective state, in which the excess and harmful excitation energies are safely dissipated as heat. Here we applied Magic-Angle Spinning (MAS) NMR and selective Arg isotope enrichment as a non-invasive method to analyze the Arg structures of the major light-harvesting complex II (LHCII). The conformations of the Arg residues that interlock helix A and B appear to be preserved in the light-harvesting and photoprotective state. Several Arg residues have very downfield shifted proton NMR responses, indicating that they stabilize the complex by strong hydrogen bonds. For the Arg Cα chemical shifts, differences are observed between LHCII in the active, light-harvesting and in the photoprotective, quenched state. These differences are attributed to a conformational change of the Arg residue in the stromal loop region. We conclude that the interlocked helices of LHCII form a rigid core. Consequently, the LHCII conformational switch does not involve changes in A/B helix tilting but likely involves rearrangements of the loops and helical segments close to the stromal and lumenal ends.
    Journal of Biological Chemistry 04/2013; · 4.65 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014