Assembly of the major light-harvesting complex II in lipid nanodiscs.

Section of Biophysics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
Biophysical Journal (Impact Factor: 3.83). 11/2011; 101(10):2507-15. DOI: 10.1016/j.bpj.2011.09.055
Source: PubMed

ABSTRACT Self-aggregation of isolated plant light-harvesting complexes (LHCs) upon detergent extraction is associated with fluorescence quenching and is used as an in vitro model to study the photophysical processes of nonphotochemical quenching (NPQ). In the NPQ state, in vivo induced under excess solar light conditions, harmful excitation energy is safely dissipated as heat. To prevent self-aggregation and probe the conformations of LHCs in a lipid environment devoid from detergent interactions, we assembled LHCII trimer complexes into lipid nanodiscs consisting of a bilayer lipid matrix surrounded by a membrane scaffold protein (MSP). The LHCII nanodiscs were characterized by fluorescence spectroscopy and found to be in an unquenched, fluorescent state. Remarkably, the absorbance spectra of LHCII in lipid nanodiscs show fine structure in the carotenoid and Q(y) region that is different from unquenched, detergent-solubilized LHCII but similar to that of self-aggregated, quenched LHCII in low-detergent buffer without magnesium ions. The nanodisc data presented here suggest that 1), LHCII pigment-protein complexes undergo conformational changes upon assembly in nanodiscs that are not correlated with downregulation of its light-harvesting function; and 2), these effects can be separated from quenching and aggregation-related phenomena. This will expand our present view of the conformational flexibility of LHCII in different microenvironments.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytochromes P450 from eukaryotes and their native redox partners cytochrome P450 reductases both belong to the class of monotopic membrane proteins containing one transmembrane anchor. Incorporation into the lipid bilayer significantly affects their equilibrium and kinetic properties and plays an important role in their interactions. We describe here the detailed protocols developed in our group for the functional self-assembly of mammalian cytochromes P450 and cytochrome P450 reductases into Nanodiscs with controlled lipid composition. The resulting preparations are fully functional, homogeneous in size, composition and oligomerization state of the heme enzyme, and show an improved stability with respect to P420 formation. We provide a brief overview of applications of Nanodisc technology to the biophysical and biochemical mechanistic studies of cytochromes P450 involved in steroidogenesis, and of the most abundant xenobiotic-metabolizing human cytochrome P450 CYP3A4.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 987:115-27. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The trimeric light-harvesting complexes II (LHCII) of plants and green algae are pigment-protein complexes involved in light harvesting and photoprotection. Different conformational states have been proposed to be responsible for their different functions. At present, detergent-solubilized LHCII is used as a model for the "light-harvesting conformation", whereas the "quenched conformation" is mimicked by LHCII aggregates. However, none of these conditions seem to perfectly reproduce the properties of LHCII in vivo. In addition, several monomeric LHC complexes are not fully stable in detergent. There is thus a need to find conditions that allow analyzing LHCs in vitro in stable and, hopefully, more native-like conformations. Here, we report a study of LHCII, the major antenna complex of plants, in complex with amphipols. We have trapped trimeric LHCII and monomeric Lhcb1 with either polyanionic or non-ionic amphipols and studied the effect of these polymers on the properties of the complexes. We show that, as compared to detergent solutions, amphipols have a stabilizing effect on LHCII. We also show that the average fluorescence lifetime of LHCII trapped in an anionic amphipol is ~30 % shorter than in α-dodecylmaltoside, due to the presence of a conformation with 230-ps lifetime that is not present in detergent solutions.
    Journal of Membrane Biology 08/2014; · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Light-harvesting antennae of the LHC family form transmembrane three-helix bundles of which two helices are interlocked by conserved arginine-glutamate (Arg-Glu) ion pairs that form ligation sites for chlorophylls (Chls). The antenna proteins of photosystem II have an intriguing dual function: in excess light they can switch their conformation from a light-harvesting into a photoprotective state, in which the excess and harmful excitation energies are safely dissipated as heat. Here we applied Magic-Angle Spinning (MAS) NMR and selective Arg isotope enrichment as a non-invasive method to analyze the Arg structures of the major light-harvesting complex II (LHCII). The conformations of the Arg residues that interlock helix A and B appear to be preserved in the light-harvesting and photoprotective state. Several Arg residues have very downfield shifted proton NMR responses, indicating that they stabilize the complex by strong hydrogen bonds. For the Arg Cα chemical shifts, differences are observed between LHCII in the active, light-harvesting and in the photoprotective, quenched state. These differences are attributed to a conformational change of the Arg residue in the stromal loop region. We conclude that the interlocked helices of LHCII form a rigid core. Consequently, the LHCII conformational switch does not involve changes in A/B helix tilting but likely involves rearrangements of the loops and helical segments close to the stromal and lumenal ends.
    Journal of Biological Chemistry 04/2013; · 4.60 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014