Fine epitope mapping within the pathogenic thyroglobulin peptide 2340-2359: Minimal epitopes retaining antigenicity across various MHC haplotypes are not necessarily immunogenic

Immunology Laboratory, Biochemistry Department, Hellenic Pasteur Institute, Greece.
Immunology (Impact Factor: 3.8). 11/2011; 135(3):245-53. DOI: 10.1111/j.1365-2567.2011.03538.x
Source: PubMed


We have previously reported that the 20-mer peptide p2340 (amino acids 2340-2359), of human thyroglobulin (Tg) has the unique feature that it causes experimental autoimmune thyroiditis (EAT) in mouse strains bearing high-responder (HR) or low-responder (LR) MHC haplotypes in Tg-induced EAT. In this study, we have employed fine epitope mapping to examine whether this property of p2340 is the result of recognition of distinct or shared minimal T-cell epitopes in the context of HR or LR MHC class II molecules. Use of overlapping peptides showed that a core minimal 9-mer epitope (LTWVQTHIR, amino acids 2344-2352) was recognized by p2340-primed T cells from both HR (H2(k,s) ) and LR (H2(b,d) ) strains, whereas a second 9-mer epitope (HIRGFGGDP, amino acids 2350-2358) was antigenic only in H2(s) hosts. Truncation analysis of LTWVQTHIR and HIRGFGGDP peptides delineated them as the minimal epitopes recognized by p2340-primed T cells from the above strains. Subcutaneous challenge of all mouse strains with the 9-mer core peptide LTWVQTHIR in adjuvant elicited specific lymph node cell proliferative responses and mild EAT only in HR hosts, highlighting this sequence as a minimal pathogenic Tg peptide in EAT. The 9-mer peptide HIRGFGGDP was not found to be immunogenic in H2(s) hosts. These data demonstrate that minimal T-cell epitopes, defined as autoantigenic in hosts of various MHC haplotypes, are not intrinsically immunogenic. Activation of naive autoreactive T cells may require contributions from flanking residues within longer peptide sequences encompassing these epitopes.

12 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experimental autoimmune thyroiditis (EAT) is commonly induced by thyroglobulin (Tg) or Tg peptides in mice genetically susceptible to thyroiditis. In the present study, we investigated the immunogenic and pathogenic potential of a novel 20mer human Tg peptide, p2208 (amino acids 2208-2227), in mouse strains classified as low (LR) or high (HR) responders in EAT. The peptide was selected for its content in overlapping binding motifs for MHC class II products, associated with either resistance (A(b) ), or susceptibility (A(s) , E(k) ) to EAT. We therefore immunized LR BALB/c (H-2(d) ) and C57BL/6 (H-2(b) ) strains, as well as HR CBA/J (H-2(k) ) and SJL/J (H-2(s) ) mice with 100 nmol of p2208 in adjuvant and collected their sera, lymph nodes and thyroid glands for further analysis. The p2208 peptide was found to contain B-cell and cryptic T-cell epitope(s) in two of the four strains examined, one LR and one HR. Specifically, it elicited direct EAT in C57BL/6 mice (two of seven mice, infiltration index 1-3), as well as in SJL/J mice (two of six mice, infiltration index 1-2). Such an EAT model could provide insights into the immunoregulatory cascades taking place in resistant hosts.
    Immunology 06/2014; 142(2):300-6. DOI:10.1111/imm.12254 · 3.80 Impact Factor

Preview (2 Sources)

12 Reads
Available from