Article

Development of a Chip/Chip/SRM Platform Using Digital Chip Isoelectric Focusing and LC-Chip Mass Spectrometry for Enrichment and Quantitation of Low Abundance Protein Biomarkers in Human Plasma

Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States
Journal of Proteome Research (Impact Factor: 5). 11/2011; 11(2):808-17. DOI: 10.1021/pr2006704
Source: PubMed

ABSTRACT Protein biomarkers are critical for diagnosis, prognosis, and treatment of disease. The transition from protein biomarker discovery to verification can be a rate limiting step in clinical development of new diagnostics. Liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS) is becoming an important tool for biomarker verification studies in highly complex biological samples. Analyte enrichment or sample fractionation is often necessary to reduce sample complexity and improve sensitivity of SRM for quantitation of clinically relevant biomarker candidates present at the low ng/mL range in blood. In this paper, we describe an alternative method for sample preparation for LC-SRM MS, which does not rely on availability of antibodies. This new platform is based on selective enrichment of proteotypic peptides from complex biological peptide mixtures via isoelectric focusing (IEF) on a digital ProteomeChip (dPC) for SRM quantitation using a triple quadrupole (QQQ) instrument with an LC-Chip (Chip/Chip/SRM). To demonstrate the value of this approach, the optimization of the Chip/Chip/SRM platform was performed using prostate specific antigen (PSA) added to female plasma as a model system. The combination of immunodepletion of albumin and IgG with peptide fractionation on the dPC, followed by SRM analysis, resulted in a limit of quantitation of PSA added to female plasma at the level of ∼1-2.5 ng/mL with a CV of ∼13%. The optimized platform was applied to measure levels of PSA in plasma of a small cohort of male patients with prostate cancer (PCa) and healthy matched controls with concentrations ranging from 1.5 to 25 ng/mL. A good correlation (r(2) = 0.9459) was observed between standard clinical ELISA tests and the SRM-based assay. Our data demonstrate that the combination of IEF on the dPC and SRM (Chip/Chip/SRM) can be successfully applied for verification of low abundance protein biomarkers in complex samples.

1 Follower
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mass spectrometry-based plasma proteomics is a field where intense research has been performed during the last decade. Being closely linked to biomarker discovery, the field has received a fair amount of criticism, mostly due to the low number of novel biomarkers reaching the clinic. However, plasma proteomics is under gradual development with improvements on fractionation methods, mass spectrometry instrumentation and analytical approaches. These recent developments have contributed to the revival of plasma proteomics. The goal of this review is to summarize these advances, focusing in particular on fractionation methods, both for targeted and global mass spectrometry-based plasma analysis.
    Expert Review of Proteomics 03/2014; DOI:10.1586/14789450.2014.901157 · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of signature biomarkers has gained considerable attention in the last decade. Although, the most well-known examples of biomarker panels stem from gene expression studies, proteomic panels are becoming more relevant, with the advent of targeted mass spectrometry-based methodologies. At the same time, the development of multigene prognostic classifiers for early stage breast cancer patients has resulted in a wealth of publicly available gene expression data from thousands of breast cancer specimens. In the present study, we integrated transcriptome and proteome-based platforms to identify genes and proteins related to patient survival. Candidate biomarker proteins have been identified in a previously generated breast cancer tissue extract proteome. A mass spectrometry-based assay was then developed for the simultaneous quantification of these twenty proteins in breast cancer tissue extracts. We quantified the relative expression levels of the twenty potential biomarkers in a cohort of 96 tissue samples from patients with early stage breast cancer. We identified two proteins, KPNA2 and CDK1, which showed potential to discriminate between estrogen receptor positive patients of high and low risk of disease recurrence. The role of these proteins in breast cancer prognosis warrants further investigation.
    Journal of Proteome Research 05/2014; 13(6). DOI:10.1021/pr500352e · 5.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For identification and characterization of proteins in complex samples, immunoenrichment coupled to mass spectrometry is a good alternative due to the sensitivity of the affinity enrichment and the specificity of mass spectrometry analysis. Antibodies are commonly used affinity agents, however for high-throughput analysis, antibody availability is usually a bottleneck. Here we present a protocol for immunoenrichment coupled to mass spectrometry in a high-throughput setup, where all steps from bead coupling to mass spectrometry sample preparation are performed in parallel in a 96-well format. Antibodies generated within the Human Protein Atlas (HPA) project were tested for the applicability as capture agents. The antibodies were covalently attached to protein A beads making it possible to reuse the coupled beads at least three times without destroying the antibody binding efficiency. Target proteins were captured from a U251 MG cell lysate, eluted, digested and analyzed using mass spectrometry. Of 30 investigated antibodies, around 50% could successfully capture the corresponding native target protein, making the available library of more than 21,000 antibodies a valuable resource for immunoenrichment assays. Due to the diversity of different antibodies regarding affinity and specificity, analyzing antibodies in a high-throughput format is challenging. Even though protocol optimization for individual antibodies can be advantageous for future studies, our method enables a fast screening strategy to determine the usefulness of antibodies in immunoenrichment setups. In addition, we show that the specificity of the antibodies can be investigated by using label free quantification.
    Journal of Proteome Research 09/2014; 13(10). DOI:10.1021/pr500691a · 5.00 Impact Factor

Full-text (2 Sources)

Download
3 Downloads
Available from
Mar 3, 2015