An Intermediate Level of BMP Signaling Directly Specifies Cranial Neural Crest Progenitor Cells in Zebrafish

Texas A&M University, United States of America
PLoS ONE (Impact Factor: 3.23). 11/2011; 6(11):e27403. DOI: 10.1371/journal.pone.0027403
Source: PubMed


The specification of the neural crest progenitor cell (NCPC) population in the early vertebrate embryo requires an elaborate network of signaling pathways, one of which is the Bone Morphogenetic Protein (BMP) pathway. Based on alterations in neural crest gene expression in zebrafish BMP pathway component mutants, we previously proposed a model in which the gastrula BMP morphogen gradient establishes an intermediate level of BMP activity establishing the future NCPC domain. Here, we tested this model and show that an intermediate level of BMP signaling acts directly to specify the NCPC. We quantified the effects of reducing BMP signaling on the number of neural crest cells and show that neural crest cells are significantly increased when BMP signaling is reduced and that this increase is not due to an increase in cell proliferation. In contrast, when BMP signaling is eliminated, NCPC fail to be specified. We modulated BMP signaling levels in BMP pathway mutants with expanded or no NCPCs to demonstrate that an intermediate level of BMP signaling specifies the NCPC. We further investigated the ability of Smad5 to act in a graded fashion by injecting smad5 antisense morpholinos and show that increasing doses first expand the NCPCs and then cause a loss of NCPCs, consistent with Smad5 acting directly in neural crest progenitor specification. Using Western blot analysis, we show that P-Smad5 levels are dose-dependently reduced in smad5 morphants, consistent with an intermediate level of BMP signaling acting through Smad5 to specify the neural crest progenitors. Finally, we performed chimeric analysis to demonstrate for the first time that BMP signal reception is required directly by NCPCs for their specification. Together these results add substantial evidence to a model in which graded BMP signaling acts as a morphogen to pattern the ectoderm, with an intermediate level acting in neural crest specification.

9 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depletion of Wnt signaling is a major requirement for the induction of the anterior prosencephalon. However, the molecular events driving the differential regionalization of this area into eye-field and telencephalon fates are still unknown. Here we show that the BMP pathway is active in the anterior neural ectoderm during late blastula to early gastrula stage in zebrafish. Bmp2b mutants and mosaic loss-of-function experiments reveal that BMP acts as a repressor of eye-field fate through inhibition of its key transcription factor Rx3, thereby protecting the future telencephalon from acquiring eye identity. This BMP-driven mechanism initiates the establishment of the telencephalon prior to the involvement of Wnt antagonists from the anterior neural border. Furthermore, we demonstrate that Rx3 and BMP are respectively required to maintain and restrict the chemokine receptor cxcr4a, which in turn contributes to the morphogenetic separation of eye-field and telencephalic cells during early neurulation.
    Developmental Cell 10/2012; 23(4):812-22. DOI:10.1016/j.devcel.2012.09.006 · 9.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain colonization by metastatic tumor cells offers a unique opportunity to investigate microenvironmental influences on the neoplastic process. The bi-directional interplay of breast cancer cells (mesodermal origin) and brain cells (neuroectodermal origin) is poorly understood and rarely investigated. In our patients undergoing neurosurgical resection of breast-to-brain metastases, specimens from the tumor/brain interface exhibited increased active gliosis as previously described. In addition, our histological characterization revealed infiltration of neural progenitor cells (NPCs) both outside and inside the tumor margin, leading us to investigate the cellular and molecular interactions between NPCs and metastases. Since signaling by the TGF-β superfamily is involved in both developmental neurobiology and breast cancer pathogenesis, we examined the role of these proteins in the context of brain metastases. The brain-metastatic breast cancer cell line MDA-MB-231Br (231Br) expressed BMP-2 at significantly higher levels compared to its matched primary breast cancer cell line MDA-MB-231 (231). Co-culturing was used to examine bi-directional cellular effects and the relevance of BMP-2 overexpression. When co-cultured with NPCs, 231 (primary) tumor cells failed to proliferate over 15 days. However, 231Br (brain metastatic) tumor cells co-cultured with NPCs escaped growth inhibition after day 5 and proliferated, occurring in parallel with NPC differentiation into astrocytes. Using shRNA and gene knock-in, we then demonstrated BMP-2 secreted by 231Br cells mediated NPC differentiation into astrocytes and concomitant tumor cell proliferation in vitro. In xenografts, overexpression of BMP-2 in primary breast cancer cells significantly enhanced their ability to engraft and colonize the brain, thereby creating a metastatic phenotype. Conversely, BMP-2 knockdown in metastatic breast cancer cells significantly diminished engraftment and colonization. The results suggest metastatic tumor cells create a permissive neural niche by steering NPC differentiation toward astrocytes through paracrine BMP-2 signaling.
    Clinical and Experimental Metastasis 02/2013; 30(6). DOI:10.1007/s10585-013-9576-7 · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Establishment of the body plan in vertebrates depends on the temporally coordinated patterning of tissues along the body axes. We have previously shown that dorsoventral (DV) tissues are temporally patterned progressively from anterior to posterior by a BMP signaling pathway. Here we report that DV patterning along the zebrafish anteroposterior (AP) axis is temporally coordinated with AP patterning by an identical patterning clock. We altered AP patterning by inhibiting or activating FGF, Wnt or retinoic acid signaling combined with inhibition of BMP signaling at a series of developmental time points, which revealed that the temporal progression of DV patterning is directly coordinated with AP patterning. We investigated how these signaling pathways are integrated and suggest a model for how DV and AP patterning are temporally coordinated. It has been shown that in Xenopus dorsal tissues FGF and Wnt signaling quell BMP signaling by degrading phosphorylated (P) Smad1/5, the BMP pathway signal transducer, via phosphorylation of the Smad1/5 linker region. We show that in zebrafish FGF/MAPK, but not Wnt/GSK3, phosphorylation of the Smad1/5 linker region localizes to a ventral vegetal gastrula region that could coordinate DV patterning with AP patterning ventrally without degrading P-Smad1/5. Furthermore, we demonstrate that alteration of the MAPK phosphorylation sites in the Smad5 linker causes precocious patterning of DV tissues along the AP axis during gastrulation. Thus, DV and AP patterning are intimately coordinated to allow cells to acquire both positional and temporal information simultaneously.
    Development 03/2013; 140(9). DOI:10.1242/dev.088104 · 6.46 Impact Factor
Show more

Preview (3 Sources)

9 Reads
Available from