Article

A noncanonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia.

Departments of Medicine (Hematology/Oncology Division) and Biostatistics and Computational Biology, Indiana, USA.
Clinical Cancer Research (Impact Factor: 7.84). 11/2011; 18(2):360-9. DOI:10.1158/1078-0432.CCR-10-3022
Source: PubMed

ABSTRACT Death-associated protein kinase 1 (DAPK1), a tumor suppressor, is a rate-limiting effector in an endoplasmic reticulum (ER) stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of acute myeloid leukemia (AML) with poor prognosis, which lacked ER stress-induced apoptosis.
Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB-and c-Jun-responsive genes, was studied. RNA interference knockdown studies were carried out in an Flt3ITD(+) cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were carried out to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus.
AMLs characterized by normal karyotype with Flt3ITD were found to have 10- to 100-fold lower DAPK1 transcripts normalized to the expression of c-Jun, a transcriptional activator of DAPK1, as compared with a heterogeneous cytogenetic category. In addition, Meis1, a c-Jun-responsive adverse AML prognostic gene signature was measured as control. These Flt3ITD(+) AMLs overexpress relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter together with histone deacetylase 2 (HDAC2) and HDAC6 in the Flt3ITD(+) human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NF-κB-inducing kinase (NIK), de-repressed DAPK1. DAPK1-repressed primary Flt3ITD(+) AMLs had selective nuclear activation of p52NF-κB.
Flt3ITD promotes a noncanonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD(+) AML.

0 0
 · 
0 Bookmarks
 · 
115 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The TNF-IL-6-STAT3 pathway plays a crucial role in promoting ulcerative colitis-associated carcinoma (UCC). To date, the negative regulation of STAT3 is poorly understood. Interestingly, intestinal epithelial cells of UCC in comparison to ulcerative colitis show high expression levels of anti-inflammatory death-associated protein kinase (DAPK) and low levels of pSTAT3. Accordingly, epithelial DAPK expression was enhanced in STAT3(IEC-KO) mice. To unravel a possible regulatory mechanism, we used an in vitro TNF-treated intestinal epithelial cell model. We identified a new function of DAPK in suppressing TNF-induced STAT3 activation as DAPK siRNA knockdown and treatment with a DAPK inhibitor potentiated STAT3 activation, IL-6 mRNA expression, and secretion. DAPK attenuated STAT3 activity directly by physical interaction shown in three-dimensional structural modeling. This model suggests that DAPK-induced conformational changes in the STAT3 dimer masked its nuclear localization signal. Alternatively, pharmacological inactivation of STAT3 led to an increase in DAPK mRNA and protein levels. Chromatin immunoprecipitation showed that STAT3 restricted DAPK expression by promoter binding, thereby reinforcing its own activation by inducing IL-6. This novel negative regulation principle might balance TNF-induced inflammation and seems to play an important role in the inflammation-associated transformation process as confirmed in an AOM+DSS colon carcinogenesis mouse model. DAPK as a negative regulator of STAT3 emerges as therapeutic option in the treatment of ulcerative colitis and UCC.
    American Journal Of Pathology 03/2013; 182(3):1005-20. · 4.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Imbalanced cell death is a common phenomenon in many human diseases, including cancer. DAPK's essential function is in promoting apoptosis. DAPK interacts with stress-induced receptors through its death domain to initiate an apoptosis cascade. In addition, DAPK phosphorylates multiple cytosolic substrates and can mediate transfer of signaling pathways to the effector caspases. A series of studies demonstrated that, depending on stimuli, DAPK expression is regulated on both the transcriptional and posttranscriptional levels. Silencing of DAPK due to hypermethylation of its promoter was reported in many types of cancer. STAT3 and p52-NFkB transcription factors have been shown to down-regulate DAPK expression. In contrast, p53, C/EBP-β and Smad transcription factors bind to their specific response elements within the DAPK promoter and induce its transcription. Post-transcriptionally, DAPK undergoes alternative splicing, which results in the production of two functionally different isoforms. Moreover, miRNA 103 and miRNA 107 recently were shown to inhibit DAPK in colorectal cancer. Here we summarize our recent knowledge about transcriptional regulation of DAPK expression.
    Apoptosis 11/2013; · 4.07 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections. To investigate the molecular cause of CVID, we carried out exome sequence analysis of a family diagnosed with CVID and identified a heterozygous frameshift mutation, c.2564delA (p.Lys855Serfs(∗)7), in NFKB2 affecting the C terminus of NF-κB2 (also known as p100/p52 or p100/p49). Subsequent screening of NFKB2 in 33 unrelated CVID-affected individuals uncovered a second heterozygous nonsense mutation, c.2557C>T (p.Arg853(∗)), in one simplex case. Affected individuals in both families presented with an unusual combination of childhood-onset hypogammaglobulinemia with recurrent infections, autoimmune features, and adrenal insufficiency. NF-κB2 is the principal protein involved in the noncanonical NF-κB pathway, is evolutionarily conserved, and functions in peripheral lymphoid organ development, B cell development, and antibody production. In addition, Nfkb2 mouse models demonstrate a CVID-like phenotype with hypogammaglobulinemia and poor humoral response to antigens. Immunoblot analysis and immunofluorescence microscopy of transformed B cells from affected individuals show that the NFKB2 mutations affect phosphorylation and proteasomal processing of p100 and, ultimately, p52 nuclear translocation. These findings describe germline mutations in NFKB2 and establish the noncanonical NF-κB signaling pathway as a genetic etiology for this primary immunodeficiency syndrome.
    The American Journal of Human Genetics 10/2013; · 11.20 Impact Factor