Article

A noncanonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia.

Departments of Medicine (Hematology/Oncology Division) and Biostatistics and Computational Biology, Indiana, USA.
Clinical Cancer Research (Impact Factor: 8.19). 11/2011; 18(2):360-9. DOI: 10.1158/1078-0432.CCR-10-3022
Source: PubMed

ABSTRACT Death-associated protein kinase 1 (DAPK1), a tumor suppressor, is a rate-limiting effector in an endoplasmic reticulum (ER) stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of acute myeloid leukemia (AML) with poor prognosis, which lacked ER stress-induced apoptosis.
Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB-and c-Jun-responsive genes, was studied. RNA interference knockdown studies were carried out in an Flt3ITD(+) cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were carried out to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus.
AMLs characterized by normal karyotype with Flt3ITD were found to have 10- to 100-fold lower DAPK1 transcripts normalized to the expression of c-Jun, a transcriptional activator of DAPK1, as compared with a heterogeneous cytogenetic category. In addition, Meis1, a c-Jun-responsive adverse AML prognostic gene signature was measured as control. These Flt3ITD(+) AMLs overexpress relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter together with histone deacetylase 2 (HDAC2) and HDAC6 in the Flt3ITD(+) human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NF-κB-inducing kinase (NIK), de-repressed DAPK1. DAPK1-repressed primary Flt3ITD(+) AMLs had selective nuclear activation of p52NF-κB.
Flt3ITD promotes a noncanonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD(+) AML.

0 Bookmarks
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imbalanced cell death is a common phenomenon in many human diseases, including cancer. DAPK's essential function is in promoting apoptosis. DAPK interacts with stress-induced receptors through its death domain to initiate an apoptosis cascade. In addition, DAPK phosphorylates multiple cytosolic substrates and can mediate transfer of signaling pathways to the effector caspases. A series of studies demonstrated that, depending on stimuli, DAPK expression is regulated on both the transcriptional and posttranscriptional levels. Silencing of DAPK due to hypermethylation of its promoter was reported in many types of cancer. STAT3 and p52-NFkB transcription factors have been shown to down-regulate DAPK expression. In contrast, p53, C/EBP-β and Smad transcription factors bind to their specific response elements within the DAPK promoter and induce its transcription. Post-transcriptionally, DAPK undergoes alternative splicing, which results in the production of two functionally different isoforms. Moreover, miRNA 103 and miRNA 107 recently were shown to inhibit DAPK in colorectal cancer. Here we summarize our recent knowledge about transcriptional regulation of DAPK expression.
    Apoptosis 11/2013; · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence supports a role of DNA methylation in the pathogenesis of leukemia. The aim of our study was to evaluate the potential genes with aberrant DNA methylation in the prediction of leukemia risk by a comprehensive meta-analysis of the published data. A series of meta-analyses were done among the eligible studies that were harvested after a careful filtration of the searching results from PubMed literature database. Mantel-Haenszel odds ratios and 95% confidence intervals were computed for each methylation event assuming the appropriate model. A total of 535 publications were initially retrieved from PubMed literature database. After a three-step filtration, we harvested 41 case-control articles that studied the role of gene methylation in the prediction of leukemia risk. Among the involving 30 genes, 20 genes were shown to be aberrantly methylated in the leukemia patients. A further subgroup meta-analysis by subtype of leukemia showed that CDKN2A, CDKN2B, ID4 genes were significantly hypermethylated in acute myeloid leukemia. Our meta-analyses identified strong associations between a number of genes with aberrant DNA methylation and leukemia. Further studies should be required to confirm the results in the future.
    PLoS ONE 05/2014; 9(5):e96822. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear factor κB or NF-κB transcription factor family plays a key role in several cellular functions, i.e. inflammation, apoptosis, cell survival, proliferation, angiogenesis, and innate and acquired immunity. The constitutive activation of NF-κB is typical of most malignancies and plays a major role in tumorigenesis. In this review, we describe NF-κB and its two pathways: the canonical pathway (RelA/p50) and the non-canonical pathway (RelB/p50 or RelB/p52). We then consider the role of the NF-κB subunits in the development and functional activity of B cells, T cells, macrophages and dendritic cells, which are the targets of hematological malignancies. The relevance of the two pathways is described in normal B and T cells and in hematological malignancies, acute and chronic leukemias (ALL, AML, CLL, CML), B lymphomas (DLBCLs, Hodgkin's lymphoma), T lymphomas (ATLL, ALCL) and multiple myeloma. We describe the interaction of NF-κB with the apoptotic pathways induced by TRAIL and the transcription factor p53. Finally, we discuss therapeutic anti-tumoral approaches as mono-therapies or combination therapies aimed to block NF-κB activity and to induce apoptosis (PARAs and Nutlin-3).
    Cellular and Molecular Life Sciences CMLS 01/2014; · 5.86 Impact Factor