Article

A Typical Preparation of Francisella tularensis O-Antigen Yields a Mixture of Three Types of Saccharides

Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States.
Biochemistry (Impact Factor: 3.01). 11/2011; 50(50):10941-50. DOI: 10.1021/bi201450v
Source: PubMed

ABSTRACT Tularemia is a severe infectious disease in humans caused by the Gram-negative bacterium Francisella tularensis (Ft). Because of its low infectious dose, high mortality rate, and the threat of its large-scale dissemination in weaponized form, development of vaccines and immunotherapeutics against Ft is essential. Ft lipopolysaccharide (LPS), which contains the linear graded-length saccharide component O-antigen (OAg) attached to a core oligosaccharide, has been reported as a protective antigen. Purification of LPS saccharides of defined length and composition is necessary to reveal the epitopes targeted by protective antibodies. In this study, we purified saccharides from LPS preparations from both the Ft subspecies holarctica live vaccine strain (LVS) and the virulent Ft subspecies tularensis SchuS4 strain using liquid chromatography. We then characterized the fractions using high-resolution mass spectrometry and tandem mass spectrometry. Three types of saccharides were observed in both the LVS and SchuS4 preparations: two consisting of OAg tetrasaccharide repeats attached to one of two core oligosaccharide variants and one consisting of tetrasaccharide repeats only (coreless). The coreless OAg oligosaccharides were shown to contain Qui4NFm (4,6-dideoxy-4-formamido-D-glucose) at the nonreducing end and QuiNAc (2-acetamido-2,6-dideoxy-O-D-glucose) at the reducing end. Purified homogeneous preparations of saccharides of each type will allow mapping of protective epitopes in Ft LPS.

0 Followers
 · 
145 Views
 · 
2 Downloads
  • Source
    • "Group 4 capsules are composed of similar (often identical) O-antigen sugars as those found in the LPS, contain acetimido sugars in their repeat unit structures, and are greater than 100 kDa in size (Whitfield, 2006). The capsule of Francisella has been shown to have a molecular weight of 100–250 kDa and contain the core sugar tetrasaccharide repeat of <2-acetamido-2,6-dideoxy-o-glucose (o-QuiNAc), 4,6-dideoxy-4-formamido-D-glucose (o-Qui4NFm), and 2-acetamido-2-deoxy-o-galacturnoamide (o-GalNAcAN), with the o-GalNAcAN unit present at twice the concentration of the other two sugars (Apicella et al., 2010; Wang et al., 2011). This is the exact composition of the sugars present in the Francisella repeating O-antigen subunits of the LPS (Vinogradov et al., 2002; Thomas et al., 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decade, studies on the virulence of the highly pathogenic intracellular bacterial pathogen Francisella tularensis have increased dramatically. The organism produces an inert LPS, a capsule, escapes the phagosome to grow in the cytosol (FPI genes mediate phagosomal escape) of a variety of host cell types that include epithelial, endothelial, dendritic, macrophage, and neutrophil. This review focuses on the work that has identified and characterized individual virulence factors of this organism and we hope to highlight how these factors collectively function to produce the pathogenic strategy of this pathogen. In addition, several recent studies have been published characterizing F. tularensis mutants that induce host immune responses not observed in wild type F. tularensis strains that can induce protection against challenge with virulent F. tularensis. As more detailed studies with attenuated strains are performed, it will be possible to see how host models develop acquired immunity to Francisella. Collectively, detailed insights into the mechanisms of virulence of this pathogen are emerging that will allow the design of anti-infective strategies.
    Frontiers in Cellular and Infection Microbiology 03/2014; 4:32. DOI:10.3389/fcimb.2014.00032 · 2.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev. © 2015 Wiley Periodicals, Inc.
    Mass Spectrometry Reviews 03/2012; 31(2):183-311. DOI:10.1002/mas.20333 · 8.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibodies to the lipopolysaccharide (LPS) of Francisella tularensis have been shown to be protective against respiratory tularaemia in mouse models, and we have previously described mouse monoclonal antibodies (mAbs) to non-overlapping terminal and internal epitopes of the F. tularensis LPS O-polysaccharide (OAg). In the current study, we used F. tularensis LPS oligosaccharides of defined OAg repeat length as molecular rulers in competition ELISA to demonstrate that the epitope targeted by the terminal OAg-binding mAb FB11 is contained within one tetrasaccharide repeat whereas the epitope targeted by the internal OAg-binding mAb Ab52 spans two tetrasaccharide repeats. Both mAbs conferred survival to BALB/c mice infected intranasally with the F. tularensis type B live vaccine strain and prolonged survival of BALB/c mice infected intranasally with the highly virulent F. tularensis type A strain SchuS4. The protective effects correlated with reduced bacterial burden in mAb-treated infected mice. These results indicate that an oligosaccharide with two OAg tetrasaccharide repeats covers both terminal and internal protective OAg epitopes, which may inform the design of vaccines for tularaemia. Furthermore, the FB11 and Ab52 mAbs could serve as reporters to monitor the response of vaccine recipients to protective B-cell epitopes of F. tularensis OAg.
    Immunology 04/2012; 136(3):352-60. DOI:10.1111/j.1365-2567.2012.03589.x · 3.74 Impact Factor
Show more

Preview

Download
2 Downloads
Available from