Low Power, Biologically Benign NIR Light Triggers Polymer Disassembly

Skaggs School Pharmacy and Pharmaceutical Sciences, Department of NanoEngineering, Materials Science and Engineering and Biomedical Sciences Programs, University of California at San Diego, La Jolla, California 92093.
Macromolecules (Impact Factor: 5.93). 11/2011; 44(21):8590-8597. DOI: 10.1021/ma201850q
Source: PubMed

ABSTRACT Near infrared (NIR) irradiation can penetrate up to 10 cm deep into tissues and be remotely applied with high spatial and temporal precision. Despite its potential for various medical and biological applications, there is a dearth of biomaterials that are responsive at this wavelength region. Herein we report a polymeric material that is able to disassemble in response to biologically benign levels of NIR irradiation upon two-photon absorption. The design relies on the photolysis of the multiple pendant 4-bromo7-hydroxycoumarin protecting groups to trigger a cascade of cyclization and rearrangement reactions leading to the degradation of the polymer backbone. The new material undergoes a 50% Mw loss after 25 sec of ultraviolet (UV) irradiation by single photon absorption and 21 min of NIR irradiation via two-photon absorption. Most importantly, even NIR irradiation at biologically benign laser power is sufficient to cause significant polymer disassembly. Furthermore, this material is well tolerated by cells both before and after degradation. These results demonstrate for the first time a NIR sensitive material with potential to be used for in vivo applications.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We established near-infrared (NIR)-light-triggered transdermal delivery systems by encapsulating NIR absorbers, silica-coated lanthanum hexaboride (LaB6@SiO2) nanostructures, and the cargo molecule to be released in biodegradable polycaprolactone (PCL) microneedles. Acting as a local heat source when exposed to NIR laser, these nanostructures cause a phase transition of the microneedles, thereby increasing the mobility of the polymer chains and triggering drug release from the microneedles. On infrared thermal images, the light-triggered melting behavior of the LaB6@SiO2-loaded microneedles was observed. By adjusting the irradiation time and the laser on/off cycles, the amount of molecules released was controlled accurately. Drug release was switched on and off at least 3 cycles, and a consistent dose was delivered in each cycle with high reproducibility. The designed microneedles were remotely triggered by laser irradiation for the controlled release of a chemotherapeutic drug, doxorubicin hydrochloride, in vivo. This system would enable dosages to be adjusted accurately to achieve a desired effect, feature a low off-state drug leakage to minimize basal effects, and can increase the flexibility of pharmacotherapy performed to treat various medical conditions.
    Acta Biomaterialia 11/2014; 13. DOI:10.1016/j.actbio.2014.11.040 · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.
    Biomacromolecules 09/2014; 15(10). DOI:10.1021/bm500990z · 5.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Near‑infrared fluorescence (NIRF) imaging is an attractive novel modality for the detection of cancer. A previous study defined two organic polymethine cyanine dyes as ideal NIRF probes, IR‑783 and its derivative MHI‑148, which have excellent optical characteristics, superior biocompatibility and cancer targeting abilities. To investigate the feasibility of NIRF dye‑mediated prostate cancer imaging, dye uptake and subcellular co‑localization were investigated in PC‑3, DU‑145 and LNCaP human prostate cancer cells and RWPE‑1 normal prostate epithelial cells. Different organic anion transporting peptide (OATP) inhibitors were utilized to explore the potential role of the OATP subtype, including the nonspecific OATP inhibitor bromosulfophthalein, the OATP1 inhibitor 17β‑estradiol, the selective OATP1B1 inhibitor rifampicin and the selective OATP1B3 inhibitor cholecystokinin octapeptide. NIRF dyes were also used for the simulated detection of circulating tumor cells and the rapid detection of prostate cancer in human prostate cancer tissues and prostate cancer xenografts in mouse models. The results revealed that the cancer‑specific uptake of these organic dyes in prostate cancer cells occurred primarily via OATP1B3. A strong NIRF signal was detected in prostate cancer tissues, but not in normal tissues that were stained with IR‑783. Prostate cancer cells were recognized with particular NIR fluorescence in isolated mononuclear cell mixtures. The results of the present study demonstrated that NIRF dye‑mediated imaging is a feasible and practicable method for prostate cancer detection, although further investigative studies are required before clinical translation.
    Molecular Medicine Reports 10/2014; DOI:10.3892/mmr.2014.2815 · 1.48 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014