Article

Effect of amphotericin B alone or in combination with rifampicin or clarithromycin against Candida species biofilms.

Infectious Diseases Division, Clínica Universidad de Navarra, Pamplona, Spain.
The International journal of artificial organs (Impact Factor: 1.76). 11/2011; 34(9):766-70. DOI: 10.5301/ijao.5000023
Source: PubMed

ABSTRACT Effectiveness of amphotericin B alone or in combination with rifampicin or clarithromycin on the killing of Candida species biofilms was investigated in vitro. Amphotericin B was assayed at 0.005 to 10 mg/ml. Rifampin and clarithromycin were assayed at 10 mg/ml. We studied 7 Candida albicans, 3 Candida parapsilosis, 3 Candida glabrata, 3 Candida krusei and 2 Candida tropicalis strains. Biofilms were developed in 96-well, flat-bottomed microtiter plates for 48 hours. A synergistic effect between amphotericin B and clarithromycin was demonstrated against 66.6% of C. parapsilosis, 66.6% of C. glabrata, and 42.8% of C. albicans biofilms. A synergistic effect between amphotericin B and rifampin was demonstrated against 66.6% of C. parapsilosis, 42.8% of C. albicans, and 33.3% of C. glabrata biofilms. No synergistic effect was observed against C. krusei or C. tropicalis biofilms with any of the combinations. Rifampin or clarithromycin alone did not exert any effect on Candida species biofilms. Rifampin or clarithromycin combinations with amphotericin B might be of interest in the treatment of Candida biofilm-related infections.

0 Bookmarks
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida albicans is a fungal pathogen that causes potentially fatal infections among immune-compromised individuals. The emergence of drug resistant C. albicans strains makes it important to identify new antifungal drug targets. Among potential targets are enzymes known as peptidyl-prolyl cis/trans isomerases (PPIases) that catalyze isomerization of peptide bonds preceding proline. We are investigating a PPIase called Ess1, which is conserved in all major human pathogenic fungi. Previously, we reported that C. albicans Ess1 is essential for growth and morphogenetic switching. In the present study, we re-evaluated these findings using more rigorous genetic analyses, including the use of additional CaESS1 mutant alleles, distinct marker genes, and the engineering of suitably-matched isogenic control strains. The results confirm that CaEss1 is essential for growth in C. albicans, but show that reduction of CaESS1 gene dosage by half (δ/+) does not interfere with morphogenetic switching. However, further reduction of CaEss1 levels using a conditional allele does reduce morphogenetic switching. We also examine the role of the linker α-helix that distinguishes C. albicans Ess1 from the human Pin1 enzyme, and present results of a genome-wide transcriptome analysis. The latter analysis indicates that CaEss1 has a conserved role in regulation of RNA polymerase II function, and is required for efficient termination of small nucleolar RNAs and repression of cryptic transcription in C. albicans.
    PLoS ONE 01/2013; 8(3):e59094. · 3.73 Impact Factor