Modeling morphogen gradient formation from arbitrary realistically shaped sources

Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
Journal of Theoretical Biology (Impact Factor: 2.12). 11/2011; 294:130-8. DOI: 10.1016/j.jtbi.2011.10.014
Source: PubMed


Much of the analytical modeling of morphogen profiles is based on simplistic scenarios, where the source is abstracted to be point-like and fixed in time, and where only the steady state solution of the morphogen gradient in one dimension is considered. Here we develop a general formalism allowing to model diffusive gradient formation from an arbitrary source. This mathematical framework, based on the Green's function method, applies to various diffusion problems. In this paper, we illustrate our theory with the explicit example of the Bicoid gradient establishment in Drosophila embryos. The gradient formation arises by protein translation from a mRNA distribution followed by morphogen diffusion with linear degradation. We investigate quantitatively the influence of spatial extension and time evolution of the source on the morphogen profile. For different biologically meaningful cases, we obtain explicit analytical expressions for both the steady state and time-dependent 1D problems. We show that extended sources, whether of finite size or normally distributed, give rise to more realistic gradients compared to a single point-source at the origin. Furthermore, the steady state solutions are fully compatible with a decreasing exponential behavior of the profile. We also consider the case of a dynamic source (e.g. bicoid mRNA diffusion) for which a protein profile similar to the ones obtained from static sources can be achieved.

Download full-text


Available from: Aitana Neves, Jun 16, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: During embryogenesis, sheets of cells are patterned by concentration profiles of morphogens, molecules that act as dose-dependent regulators of gene expression and cell differentiation. Concentration profiles of morphogens can be formed by a source-sink mechanism, whereby an extracellular protein is secreted from a localized source, diffuses through the tissue and binds to cell surface receptors. A morphogen molecule bound to its receptor can either dissociate or be internalized by the cell. The effects of morphogens on cells depend on the occupancy of surface receptors, which in turn depends on morphogen concentration. In the simplest case, the local concentrations of the morphogen and morphogen-receptor complexes monotonically increase with time from zero to their steady-state values. Here, we derive analytical expressions for the time scales which characterize the formation of the steady-state concentrations of both the diffusible morphogen molecules and morphogen-receptor complexes at a given point in the patterned tissue.
    The Journal of Chemical Physics 06/2013; 138(24):244105. DOI:10.1063/1.4811654 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of patterns that are proportional to the size of the embryo is an intriguing but poorly understood feature of development. Molecular mechanisms controlling such proportionality, or scaling, can be probed through quantitative interrogations of the properties of morphogen gradients that instruct patterning. Recent studies of the Drosophila morphogen gradient Bicoid (Bcd), which is required for anterior-posterior (AP) patterning in the early embryo, have uncovered two distinct ways of scaling. Whereas between-species scaling is achieved by adjusting the exponential shape characteristic of the Bcd gradient profile, namely, its length scale or length constant (λ), within-species scaling is achieved through adjusting the profile's amplitude, namely, the Bcd concentration at the anterior (B0). Here, we report a case in which Drosophila melanogaster embryos exhibit Bcd gradient properties uncharacteristic of their size. The embryos under investigation were from a pair of inbred lines that had been artificially selected for egg size extremes. We show that B0 in the large embryos is uncharacteristically low but λ is abnormally extended. Although the large embryos have more total bcd mRNA than their smaller counterparts, as expected, its distribution is unusually broad. We show that the large and small embryos develop gene expression patterns exhibiting boundaries that are proportional to their respective lengths. Our results suggest that the large-egg inbred line has acquired compensating properties that counteract the extreme length of the embryos to maintain Bcd gradient properties necessary for robust patterning. Our study documents, for the first time to our knowledge, a case of within-species Bcd scaling achieved through adjusting the gradient profile's exponential shape characteristic, illustrating at a molecular level how a developmental system can follow distinct operational paths towards the goal of robust and scaled patterning.
    Development 11/2013; 141(1). DOI:10.1242/dev.098640 · 6.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The potent activity of Wnt/Wingless (Wg) signals necessitates sophisticated mechanisms that spatially and temporally regulate their distribution and range of action. The two main receptor components for Wg - Arrow (Arr) and Frizzled 2 (Fz2) - are transcriptionally downregulated by Wg signaling, thus forming gradients that oppose that of Wg. Here, we analyze the relevance of this transcriptional regulation for the formation of the Wg gradient in the Drosophila wing disc by combining in vivo receptor overexpression with an in silico model of Wg receptor interactions. Our experiments show that ubiquitous upregulation of Arr and Fz2 has no significant effects on Wg output, whereas clonal overexpression of these receptors leads to signaling discontinuities that have detrimental phenotypic consequences. These findings are supported by our in silico model for Wg diffusion and signal transduction, which suggests that abrupt changes in receptor levels causes discontinuities in Wg signaling. Furthermore, we identify a 200 bp regulatory element in the arr locus that can account for the Arr gradient, and we show that this is indirectly negatively controlled by Wg activity. Finally, we analyze the role of Frizzled 3 (Fz3) in this system and find that its expression, which is induced by Wg, contributes to the establishment of the Arr and Fz2 gradients through counteracting canonical signaling. Taken together, our results provide a model in which the regulatory network of Wg and the three receptor components account for the range and shape of this prototypical morphogen system.
    Development 06/2014; 141(12):2483-93. DOI:10.1242/dev.108662 · 6.46 Impact Factor
Show more