Article

Genotoxicity of inhaled nanosized TiO(2) in mice.

Nanosafety Research Center, Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland.
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis (Impact Factor: 3.9). 11/2011; 745(1-2):58-64. DOI: 10.1016/j.mrgentox.2011.10.011
Source: PubMed

ABSTRACT In vitro studies have suggested that nanosized titanium dioxide (TiO(2)) is genotoxic. The significance of these findings with respect to in vivo effects is unclear, as few in vivo studies on TiO(2) genotoxicity exist. Recently, nanosized TiO(2) administered in drinking water was reported to increase, e.g., micronuclei (MN) in peripheral blood polychromatic erythrocytes (PCEs) and DNA damage in leukocytes. Induction of micronuclei in mouse PCEs was earlier also described for pigment-grade TiO(2) administered intraperitoneally. The apparent systemic genotoxic effects have been suggested to reflect secondary genotoxicity of TiO(2) due to inflammation. However, a recent study suggested that induction of DNA damage in mouse bronchoalveolar lavage (BAL) cells after intratracheal instillation of nanosized or fine TiO(2) is independent of inflammation. We examined here, if inhalation of freshly generated nanosized TiO(2) (74% anatase, 26% brookite; 5 days, 4 h/day) at 0.8, 7.2, and (the highest concentration allowing stable aerosol production) 28.5 mg/m(3) could induce genotoxic effects in C57BL/6J mice locally in the lungs or systematically in peripheral PCEs. DNA damage was assessed by the comet assay in lung epithelial alveolar type II and Clara cells sampled immediately following the exposure. MN were analyzed by acridine orange staining in blood PCEs collected 48 h after the last exposure. A dose-dependent deposition of Ti in lung tissue was seen. Although the highest exposure level produced a clear increase in neutrophils in BAL fluid, indicating an inflammatory effect, no significant effect on the level of DNA damage in lung epithelial cells or micronuclei in PCEs was observed, suggesting no genotoxic effects by the 5-day inhalation exposure to nanosized TiO(2) anatase. Our inhalation exposure resulted in much lower systemic TiO(2) doses than the previous oral and intraperitoneal treatments, and lung epithelial cells probably received considerably less TiO(2) than BAL cells in the earlier intratracheal study.

0 Bookmarks
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the growing concern over the potential biological impact of nanoparticles (NPs) in the aquatic environment, little is known about their interactions with other pollutants. The bivalve Mytilus sp, largely utilized as a sentinel for marine contamination, has been shown to represent a significant target for different types of NP, including n-TiO2, one of the most widespread in use. In this work, the possible interactive effects of n-TiO2 and 2,3,7,8-TCDD, chosen as models of NP and organic contaminant, respectively, were investigated in Mytilus galloprovincialis. In vitro experiments with n-TiO2 and TCDD, alone and in combination, were carried out in different conditions (concentrations and times of exposure), depending on the target (hemocytes, gill cells and biopsies) and the endpoint measured. Mussels were also exposed in vivo to n-TiO2 (100μgL(-1)) or to TCDD (0.25μgL(-1)), alone and in combination, for 96h. A wide range of biomarkers, from molecular to tissue level, were measured: lysosomal membrane stability and phagocytosis in hemocytes, ATP-binding cassette efflux transporters in gills (gene transcription and efflux activity), several biomarkers of genotoxicity in gill and digestive cells (DNA damage, random amplified polymorphic DNA-RAPD changes), lysosomal biomarkers and transcription of selected genes in the digestive gland. The results demonstrate that n-TiO2 and TCDD can exert synergistic or antagonistic effects, depending on experimental condition, cell/tissue and type of measured response. Some of these interactions may result from a significant increase in TCDD accumulation in whole mussel organisms in the presence of n-TiO2, indicating a Trojan horse effect. The results represent the most extensive data obtained so far on the sub-lethal effects of NPs and organic contaminants in aquatic organisms. Moreover, these data extend the knowledge on the molecular and cellular targets of NPs in bivalves.
    Aquatic toxicology (Amsterdam, Netherlands) 11/2013; · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxicological characterization of manufactured nanomaterials (NMs) is essential for safety assessment, while keeping pace with innovation from their development and application in consumer products. The specific physicochemical properties of NMs, including size and morphology, might influence their toxicity and have impact on human health. The present work aimed to evaluate the genotoxicity of nanosized titanium dioxide (TiO2), synthetic amorphous silica (SAS) and multiwalled carbon nanotubes (MWCNT), in human lymphocytes. The morphology and size of those NMs were characterized by transmission electron microscopy, while the hydrodynamic particle size-distributions were determined by dynamic light scattering. Using a standardized procedure to ensure the dispersion of the NMs and the cytokinesis-block micronucleus assay (without metabolic activation), we observed significant increases in the frequencies of micronucleated binucleated cells (MNBC) for some TiO2 NMs and for two MWCNTs, although no clear dose-response relationships could be disclosed. In contrast, all forms of SAS analyzed in this study were unable to induce micronuclei. The present findings increase the weight of evidence towards a genotoxic effect of some forms of TiO2 and some MWCNT. Regarding safety assessment, the differential genotoxicity observed for closely related NMs highlights the importance of investigating the toxic potential of each NM individually, instead of assuming a common mechanism and equal genotoxic effects for a set of similar NMs.
    Toxicology in Vitro 06/2013; 28:60-69. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Titanium dioxide (TiO2 ) nanomaterials (NMs) are widely used in a diversity of products including cosmetics, pharmaceuticals, food, and inks, despite uncertainties surrounding the potential health risks that they pose to humans and the environment. Previous studies on the genotoxicity of TiO2 have reported discrepant or inconclusive findings in both in vitro and in vivo systems. This study explores the in vivo genotoxic potential of a well-characterized uncoated TiO2 NM with an average diameter of 22 nm (NM-102, from JRC repository) using several genotoxicity endpoints in the LacZ plasmid-based transgenic mouse model. Mice were exposed by intravenous injection to two daily doses of NM-102: 10 and 15 mg/kg of body weight/day. Micronuclei were analyzed in peripheral blood reticulocytes 42 hr after the last treatment. DNA strand breaks (comet assay) and gene mutations were determined in the spleens and livers of the same animals 28 days after the last treatment. Histopathological and cytological analyses were also performed in liver samples. Genotoxic effects were not detected in mice exposed to the nanosized TiO2 under the experimental conditions used, despite a moderate inflammatory response that was observed in the liver. Considering the biopersistence of TiO2 in mouse liver and the moderate inflammatory response, the possibility of a secondary genotoxic effect at higher doses and in conditions that result in a stronger inflammatory response, for example, within a longer time window, should be investigated further. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc.
    Environmental and Molecular Mutagenesis 03/2014; · 3.71 Impact Factor

Full-text

View
31 Downloads
Available from
May 31, 2014