Effects of platelet-rich and -poor plasma on the reparative response of gingival fibroblasts.

Laboratory of Periodontal Physiology, Dentistry Academic Unit, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
Clinical Oral Implants Research (Impact Factor: 3.43). 09/2011; 23(9):1104-11. DOI: 10.1111/j.1600-0501.2011.02274.x
Source: PubMed

ABSTRACT Although platelet-rich plasma (PRP) has been proposed as a therapeutic tool to enhance wound repair, the cellular and molecular mechanisms stimulated by this agent are still not completely understood. The present study was designed to characterize the effects of PRP and platelet-poor plasma (PPP) supernatants on cell responses involved in gingival tissue repair.
We studied the response of human gingival fibroblasts (HGF) to PRP and PPP fractions on: matrix contraction, cell migration, myofibroblastic differentiation, production of matrix components and proteolytic enzymes. PRP and PPP were obtained from donors using a commercial kit. Matrix contraction was evaluated by means of collagen lattices in the presence of matrix metalloproteinase (MMP) and actin polymerization inhibitors. The production of matrix molecules and proteinases was assessed through Western-blot. RhoA activity was evaluated through a pull-down assay. Actin distribution and focal adhesions were assessed through immunofluorescence. Transforming growth factor-beta (TGF-β) was quantified through ELISA.
Both PRP and PPP stimulated human gingival fibroblasts-populated collagen gel contraction and Ilomastat and cytochalasin D inhibited this response. PRP and PPP also stimulated MT1-MMP and TIMP-2 production, RhoA activation and actin cytoskeleton remodeling, cell migration/invasion and myofibroblastic differentiation. TGF-β1 was found at significantly higher concentrations in PRP than in PPP.
Both PRP and PPP promote wound tissue remodeling and contraction through the stimulation of actin remodeling, the activity of MMPs, promotion of cell migration, and myofibroblastic differentiation. The similar biological responses induced by PRP and PPP suggest that both platelet-derived fractions may exert a positive effect on gingival repair.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-17 (IL-17) is a cytokine secreted predominantly by Th17 cells. Although IL-17 is primarily associated with the induction of tissue inflammation, the other biological functions of IL-17, including its wound-healing functions, have yet to be thoroughly explored. Fibroblast proliferation and migration play essential roles in periodontal wound-healing responses. In this study, we report that IL-17A can increase the migration and expression of matrix metalloproteinase (MMP)-1 in human periodontal ligament (PDL) fibroblasts but has no effect on PDL fibroblast proliferation. IL-17A-induced MMP-1 expression led to cell migration, which was attenuated by pre-treatment with IL-17 receptor neutralizing antibody and small interfering RNA (siRNA) for MMP-1. The IL-17A-induced cell migration was also attenuated by its tissue inhibitor of matrix metalloproteinase (TIMP)-1. In addition, a p38 mitogen-activated protein kinase (MAPK) inhibitor (SB203580) inhibited IL-17A-induced increase of the migration and MMP-1 upregulation of PDL fibroblasts. The involvement of p38 MAPK in IL-17A-induced MMP-1 expression and cell migration was further confirmed by transfection of p38α siRNA. A nuclear factor kappaB ((NF-κB) inhibitor (pyrrolidine dithiocarbamate) also suppressed the cell migration and MMP-1 expression enhanced by IL-17A. Moreover, transfection with p38α siRNA inhibited IL-17A-induced NF-κB nuclear translocation as well as NF-κB binding activity. Our results suggest that IL-17A enhances the migration of PDL fibroblasts by increasing MMP-1 expression through the IL-17 receptor, p38 MAPK, and NF-κB signal transduction pathways. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 08/2013; · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The underlying rationale of platelet rich plasma (PRP) therapy is that an injection of concentrated PRP at the site of injury may promote tissue repair via cytokine release from platelets. The molecular mechanisms of PRP therapy in the skin wound healing process are not well understood at present, and would benefit from clarification. PRP was stimulated with angonists for 5 min, and cytokine profile analysis was performed. To investigate the wound healing activity of PRP, cell proliferation and migration analyses were performed in skin cells. The effects of PRP were analyzed on the expression and activity of matrix metalloproteinase (MMP)-1, -2, -9, and the activation of transcription factors. Thrombin was found to be a strong stimulator of PRP activation to release growth factors and chemokines. PRP induced cell proliferation and migration in HUVECs, HaCaT cells, and HDFs, as well as MMP-1and MMP-9 expression in HaCaT cells, but PRP did not have a significant effect on the expression or activity of MMPs in HDFs. The transcription factors, including signal transducer and activator of transcription-3 (STAT-3) were found to be phosphorylated following PRP treatment in HaCaT cells. In this study, we have identified the cytokine profile of activated PRP after agonist stimulation. We have shown that PRP plays an active role in promoting the proliferation and migration of skin cells via the regulation of MMPs, and this may be applicable to the future development of PRP therapeutics to enhance skin wound healing.
    The Korean journal of hematology 12/2011; 46(4):265-73.