Significant association of multiple human cytomegalovirus genomic Loci with glioblastoma multiforme samples

Institute for Molecular Virology, McArdle Laboratory for Cancer Research, Madison, Wisconsin, USA.
Journal of Virology (Impact Factor: 4.65). 11/2011; 86(2):854-64. DOI: 10.1128/JVI.06097-11
Source: PubMed

ABSTRACT Viruses are appreciated as etiological agents of certain human tumors, but the number of different cancer types induced or exacerbated by viral infections is unknown. Glioblastoma multiforme (GBM)/astrocytoma grade IV is a malignant and lethal brain cancer of unknown origin. Over the past decade, several studies have searched for the presence of a prominent herpesvirus, human cytomegalovirus (HCMV), in GBM samples. While some have detected HCMV DNA, RNA, and proteins in GBM tissues, others have not. Therefore, any purported association of HCMV with GBM remains controversial. In most of the previous studies, only one or a select few viral targets were analyzed. Thus, it remains unclear the extent to which the entire viral genome was present when detected. Here we report the results of a survey of GBM specimens for as many as 20 different regions of the HCMV genome. Our findings indicate that multiple HCMV loci are statistically more likely to be found in GBM samples than in other brain tumors or epileptic brain specimens and that the viral genome was more often detected in frozen samples than in paraffin-embedded archival tissue samples. Finally, our experimental results indicate that cellular genomes substantially outnumber viral genomes in HCMV-positive GBM specimens, likely indicating that only a minority of the cells found in such samples harbor viral DNA. These data argue for the association of HCMV with GBM, defining the virus as oncoaccessory. Furthermore, they imply that, were HCMV to enhance the growth or survival of a tumor (i.e., if it is oncomodulatory), it would likely do so through mechanisms distinct from classic tumor viruses that express transforming viral oncoproteins in the overwhelming majority of tumor cells.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human cytomegalovirus (HCMV) is a herpesvirus that is prevalent in the human population. HCMV has recently been implicated in different cancer forms where it may provide mechanisms for oncogenic transformation, oncomodulation and tumour cell immune evasion. Moreover, antiviral treatment against HCMV has been shown to inhibit tumour growth in preclinical models. Here we describe the possible involvement of HCMV in cancer and discuss the potential molecular impact expression of HCMV proteins have on tumour cells and the surrounding tumour microenvironment.
    Oncotarget 12/2011; 2(12):1329-38. · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Viral drug toxicity, resistance, and an increasing immunosuppressed population warrant continued research into new avenues for limiting diseases associated with human cytomegalovirus (HCMV). In this study, a small interfering RNA (siRNA), siX3, was designed to target coding sequences within shared exon 3 of UL123 and UL122 transcripts encoding IE1 and IE2 immediate-early proteins of HCMV. Pretreatment of cells with siX3 reduced the levels of viral protein expression, DNA replication, and progeny virus production compared to control siRNA. Two siRNAs against UL54 and overlapping transcripts (UL55-57) were compared to siX3 in HCMV infection and were also found to be effective at inhibiting HCMV replication. Further investigation into the effects of the siRNAs on viral replication showed that pretreatment with each of the siRNAs resulted in an inhibition in the formation of mature replication compartments. The ability of these siRNAs to prevent or reduce certain cytopathic effects associated with HCMV infection was also examined. Infected cells pretreated with siX3, but not siUL54, retained promyelocytic leukemia (PML) protein in cellular PML bodies, an essential component of this host intrinsic antiviral defense. DNA damage response proteins, which are localized in nuclear viral replication compartments, were reduced in the siX3- and siUL54-treated cells. siX3, but not siUL54, prevented DNA damage response signaling early after infection. Therapeutic efficacy was demonstrated by treating cells with siRNAs after HCMV replication had commenced. Together, these findings suggest that siRNAs targeting exon 3 of the major IE genes or the UL54-57 transcripts be further studied for their potential development into anti-HCMV therapeutics.
    Journal of Virology 03/2012; 86(10):5660-73. DOI:10.1128/JVI.06338-11 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human cytomegalovirus (HCMV) is suspected to increase tumour malignancy by infection of cancer and/or stroma cells (oncomodulation). So far, oncomodulatory mechanisms have been attributed to the presence of HCMV and direct action of its gene products on cancer cells. Here, we investigated whether the prolonged presence of HCMV can result in the irreversible selection of a cancer cell population with increased malignancy. The neuroblastoma cell line UKF-NB-4 was long-term (200 passages) infected with the HCMV strain Hi91 (UKF-NB-4(Hi)) before virus eradication using ganciclovir (UKF-NB-4(HiGCV)). Global gene expression profiling of UKF-NB-4, UKF-NB-4(Hi) and UKF-NB-4(HiGCV) cells and subsequent bioinformatic signal transduction pathway analysis revealed clear differences between UKF-NB-4 and UKF-NB-4(Hi), as well as between UKF-NB-4 and UKF-NB-4(HiGCV) cells, but only minor differences between UKF-NB-4(Hi) and UKF-NB-4(HiGCV) cells. Investigation of the expression of a subset of five genes in different chronically HCMV-infected cell lines before and after virus eradication suggested that long-term HCMV infection reproducibly causes specific changes. Array comparative genomic hybridisation showed virtually the same genomic differences for the comparisons UKF-NB-4(Hi)/UKF-NB-4 and UKF-NB-4(HiGCV)/UKF-NB-4. UKF-NB-4(Hi) cells are characterised by an increased invasive potential compared with UKF-NB-4 cells. This phenotype was completely retained in UKF-NB-4(HiGCV) cells. Moreover, there was a substantial overlap in the signal transduction pathways that differed significantly between UKF-NB-4(Hi)/UKF-NB-4(HiGCV) and UKF-NB-4 cells and those differentially regulated between tumour tissues from neuroblastoma patients with favourable or poor outcome. In conclusion, we present the first experimental evidence that long-term HCMV infection can result in the selection of tumour cell populations with enhanced malignancy.
    04/2012; 1(4):e10. DOI:10.1038/oncsis.2012.10
Show more


1 Download
Available from

Paul Clark