Direct delivery of low-dose 7-nitroindazole into the bronchial artery attenuates pulmonary pathophysiology after smoke inhalation and burn injury in an ovine model.

Department of Plastic and Reconstructive Surgery, Tokyo Woman's Medical University, Tokyo, Japan.
Shock (Augusta, Ga.) (Impact Factor: 2.87). 12/2011; 36(6):575-9. DOI: 10.1097/SHK.0b013e3182360f2e
Source: PubMed

ABSTRACT Bronchial circulation plays a critical role in the pathophysiology of burn and smoke inhalation-induced acute lung injury. A 10-fold increase in bronchial blood flow is associated with excessive production of nitric oxide (NO) following smoke inhalation and cutaneous burn. Because an increased release of neuropeptides from the airway has been implicated in smoke inhalation injury, we hypothesized that direct delivery into the bronchial artery of low-dose 7-nitroindazole (7-NI), a specific neuronal NO synthase inhibitor, would attenuate smoke/burn-induced acute lung injury. Eighteen adult female sheep were instrumented for chronic hemodynamic monitoring 5 to 7 days before the injury. The bronchial artery was cannulated via intercostal thoracotomy, while blood flow was preserved. Acute lung injury was induced by 40% total body surface area third-degree cutaneous burn and smoke inhalation (48 breaths of cotton smoke, <40°C) under deep anesthesia. Following injury, animals (35.4 ± 1.1 kg) were divided into three groups: (a) 7-NI group: 1 h after injury, 7-NI (0.01 mg · kg · h, 2 mL · h) was continuously infused into the bronchial artery, n = 6; (b) control group: 1 h after injury, same amount of saline was injected into the bronchial artery, n = 6; (c) sham group: no injury, no treatment, same operation and anesthesia, n = 6. After injury, all animals were ventilated and fluid resuscitated according to an established protocol. The experiment was conducted for 24 h. Injury induced severe pulmonary dysfunction, which was associated with increases in lung edema formation, airway obstruction, malondialdehyde, and nitrate/nitrite. 7-Nitroindazole injection into the bronchial artery reduced the degree of lung edema formation and improved pulmonary gas exchange. The increase in malondialdehyde and nitrate/nitrite in lung tissue was attenuated by treatment. Our data strongly suggest that local airway production of NO contributes to pulmonary dysfunction following smoke inhalation and burn injury. Most mechanisms that drive this pathophysiology reside in the airway.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Epidemiologic studies associate childhood exposure to traffic-related air pollution with increased respiratory infections and asthmatic and allergic symptoms. The strongest associations between traffic exposure and negative health impacts are observed in individuals with respiratory inflammation. We hypothesized that interactions between nitric oxide (NO), increased during lung inflammatory responses, and reactive oxygen species (ROS), increased as a consequence of traffic exposure [box drawings light horizontal] played a key role in the increased susceptibility of these at-risk populations to traffic emissions. METHODS: Diesel exhaust particles (DEP) were used as surrogates for traffic particles. Murine lung epithelial (LA-4) cells and BALB/c mice were treated with a cytokine mixture (cytomix: TNFalpha, IL-1beta, and IFNgamma) to induce a generic inflammatory state. Cells were exposed to saline or DEP (25 mug/cm2) and examined for differential effects on redox balance and cytotoxicity. Likewise, mice undergoing nose-only inhalation exposure to air or DEP (2 mg/m3 x 4 h/d x 2 d) were assessed for differential effects on lung inflammation, injury, antioxidant levels, and phagocyte ROS production. RESULTS: Cytomix treatment significantly increased LA-4 cell NO production though iNOS activation. Cytomix + DEP-exposed cells incurred the greatest intracellular ROS production, with commensurate cytotoxicity, as these cells were unable to maintain redox balance. By contrast, saline + DEP-exposed cells were able to mount effective antioxidant responses. DEP effects were mediated by: (1) increased ROS including superoxide anion (O2 -), related to increased xanthine dehydrogenase expression and reduced cytosolic superoxide dismutase activity; and (2) increased peroxynitrite generation related to interaction of O2 - with cytokine-induced, NO. Effects were partially reduced by superoxide dismutase (SOD) supplementation or by blocking iNOS induction. In mice, cytomix + DEP-exposure resulted in greater ROS production in lung phagocytes. Phagocyte and epithelial effects were, by and large, prevented by treatment with FeTMPyP, which accelerates peroxynitrite catalysis. CONCLUSIONS: During inflammation, due to interactions of NO and O2 -, DEP-exposure was associated with nitrosative stress in surface epithelial cells and resident lung phagocytes. As these cell types work in concert to provide protection against inhaled pathogens and allergens, dysfunction would predispose to development of respiratory infection and allergy. Results provide a mechanism by which individuals with pre-existing respiratory inflammation are at increased risk for exposure to traffic-dominated urban air pollution.
    Particle and Fibre Toxicology 11/2012; 9(1):43. · 9.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The year 2011 was another robust year for burn research. Over 1100 articles were published on a wide range of burn injury and treatment topics. In this review, we highlight some of the interesting and potentially influential research in the following areas: critical care, infection, inhalation injury, epidemiology, wound characterization and treatment, nutrition and metabolism, pain management, burn reconstruction, psychology, and rehabilitation. As in years past, burn injury research reflects the multidisciplinary and holistic care that is needed to treat this challenging injury condition.
    Journal of burn care & research: official publication of the American Burn Association 01/2013; · 1.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reactive nitrogen species such as peroxynitrite play a significant role in burn and smoke inhalation injury. The bronchial circulation increases more than 10-fold in response to this combination injury. We hypothesized that direct delivery of low-dose WW-85, a peroxynitrite decomposition catalyst, into the bronchial artery would attenuate burn- and smoke inhalation-induced acute lung injury. In adult female sheep (n = 17), the bronchial artery was cannulated in preparation surgery. After a 5- to 7-day recovery period, sheep were subjected to a burn (40% total body surface area, third degree) and inhalation injury (48 breaths of cotton smoke, <40°C). The animals were divided into three groups following the injury: (i) WW-85 group: 1 h after injury, WW-85 (0.002 mg/kg per hour) was continuously infused into the bronchial artery, n = 5; (ii) control group: 1 h after injury, an equivalent amount of saline was injected into the bronchial artery, n = 6; (iii) sham group: no injury, no treatment, same operation and anesthesia, n = 6. All animals were mechanically ventilated and fluid resuscitated equally. In the control group, the injury induced a severe deterioration of pulmonary oxygenation and shunting and an increase in pulmonary microvascular permeability toward sham. The injury was further associated with an increase in reactive nitrogen species in lung tissues of the control group. All these alterations were significantly attenuated in the WW-85 group. We demonstrated that a low dosage of WW-85 directly administered into the bronchial artery attenuated pulmonary dysfunction to the same extent as higher systemically administered doses in previous experiments. Our data strongly suggest that local airway production of peroxynitrite contributes to pulmonary dysfunction following smoke inhalation and burn injury.
    Shock (Augusta, Ga.) 10/2012; 38(5):543-8. · 2.87 Impact Factor