Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity.

Department of Neurology, The Ohio State University, 395 West 12th Avenue Columbus, OH 43210, USA.
Brain (Impact Factor: 10.23). 11/2011; 134(Pt 12):3578-89. DOI: 10.1093/brain/awr262
Source: PubMed

ABSTRACT Pro-inflammatory T cells mediate autoimmune demyelination in multiple sclerosis. However, the factors driving their development and multiple sclerosis susceptibility are incompletely understood. We investigated how micro-RNAs, newly described as post-transcriptional regulators of gene expression, contribute to pathogenic T-cell differentiation in multiple sclerosis. miR-128 and miR-27b were increased in naïve and miR-340 in memory CD4(+) T cells from patients with multiple sclerosis, inhibiting Th2 cell development and favouring pro-inflammatory Th1 responses. These effects were mediated by direct suppression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and interleukin-4 (IL4) expression, resulting in decreased GATA3 levels, and a Th2 to Th1 cytokine shift. Gain-of-function experiments with these micro-RNAs enhanced the encephalitogenic potential of myelin-specific T cells in experimental autoimmune encephalomyelitis. In addition, treatment of multiple sclerosis patient T cells with oligonucleotide micro-RNA inhibitors led to the restoration of Th2 responses. These data illustrate the biological significance and therapeutic potential of these micro-RNAs in regulating T-cell phenotypes in multiple sclerosis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical trial results demonstrating that B-cell depletion substantially reduces new relapses in patients with multiple sclerosis (MS) have established that B cells play a role in the pathophysiology of MS relapses. The same treatment appears not to impact antibodies directed against the central nervous system, which underscores the contribution of antibody-independent functions of B cells to disease activity. One mechanism by which B cells are now thought to contribute to MS activity is by over-activating T cells, including through aberrant expression of B cell pro-inflammatory cytokines. However, the mechanisms underlying the observed B cell cytokine dysregulation in MS remain unknown. We hypothesized that aberrant expression of particular microRNAs might be involved in the dysregulated pro-inflammatory cytokine responses of B cells of patients with MS. Through screening candidate microRNAs in activated B cells of MS patients and matched healthy subjects, we discovered that abnormally increased secretion of lymphotoxin and tumor necrosis factor α by MS B cells is associated with abnormally increased expression of miR-132. Over-expression of miR-132 in normal B cells significantly enhanced their production of lymphotoxin and tumor necrosis factor α. The over-expression of miR-132 also suppressed the miR-132 target, sirtuin-1. We confirmed that pharmacological inhibition of sirtuin-1 in normal B cells induces exaggerated lymphotoxin and tumor necrosis factor α production, while the abnormal production of these cytokines by MS B cells can be normalized by resveratrol, a sirtuin-1 activator. These results define a novel miR-132-sirtuin-1 axis that controls pro-inflammatory cytokine secretion by human B cells, and demonstrate that a dysregulation of this axis underlies abnormal pro-inflammatory B cell cytokine responses in patients with MS.
    PLoS ONE 01/2014; 9(8):e105421. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS) demyelination and axonal degeneration. Although the cause of MS is still unknown, it is widely accepted that novel drug targets need to focus on both decreasing inflammation and promoting CNS repair. In MS and experimental autoimmune encephalomyelitis, non-coding small microRNAs (miRNAs) are dysregulated in the immune system and CNS. Since individual miRNAs are able to down-regulate multiple targeted mRNA transcripts, even minor changes in miRNA expression may lead to significant alterations in gene expression. Herein, we review miRNA signatures reported in CNS tissue and immune cells of MS patients and consider how altered miRNA expression may influence MS pathology.
    Frontiers in Genetics 01/2013; 3.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Treatments for multiple sclerosis (MS) have changed over the past years as our understanding of immunology and neuroscience has evolved. Experimental autoimmune encephalomyelitis (EAE) continues to remain the major model for MS and has been a major vehicle in the development of new therapeutic targets for MS, including new agents such as natalizumab, fingolimod, and dimethyl fumarate. As progress in the molecular understanding of immunology continues, many observations in EAE are pursued with the ultimate goal of defining the pathophysiology of MS and development of innovative treatments for the disease. Although many consider MS to be a T cell-mediated autoimmune disease directed against myelin antigens, the exact cause of the disease is still unknown. For many years, it was thought that myelin-specific T cells that secreted interferon-γ and were proinflammatory were the major T cell subset that mediated the disease, but recent studies on the cytokine phenotype of pathogenic T cells in EAE and MS have opened debate on this issue. Work over the past several years suggests that the transcription factor T-bet appears to be an important factor in T cell encephalitogenicity; however, recent data suggest that it is also dispensable in certain situations, particularly for Th17 cells. Understanding the molecular mechanisms responsible for T cell encephalitogenicity in MS and other autoimmune diseases will be essential in the development of specific therapies for these inflammatory diseases.
    08/2014; 34(8):623-32.

Full-text (2 Sources)

Available from
May 26, 2014