Article

Rapid and high resolution genotyping of all Escherichia coli serotypes using 10 genomic repeat-containing loci

Division of Infectious Diseases control, Norwegian Institute of Public Health, Lovisenberggata 8, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
Journal of microbiological methods (Impact Factor: 2.1). 11/2011; 88(1):134-9. DOI: 10.1016/j.mimet.2011.11.003
Source: PubMed

ABSTRACT Our laboratory has previously published two multiple-locus variable-number tandem-repeats analysis (MLVA) methods for rapid genotyping of Escherichia coli (E. coli), which are now in routine use for surveillance and outbreak detection. The first assay developed was specific for E. coli O157:H7; however this assay was not suitable for genotyping other E. coli serotypes. A new generic MLVA-assay was then developed with the capability of genotyping all E. coli serotypes. This generic E. coli MLVA (GECM7) was based on polymorphism in seven variable number of tandem repeats (VNTR) loci. GECM7 worked well with the majority of E. coli serotypes; however we wanted to increase the resolution for this method based in part of comparison with PFGE typing of E. coli O26:H11, where PFGE appeared to display higher resolution. The GECM7 method was improved by adding three new repeat-loci to a total of ten (GECM10), and a considerable increase in resolution was observed (from 296 to 507 genotypes on the same set of strains).

0 Followers
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of infections caused by Cefotaximase-Munich (CTX-M)-type extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) has rapidly increased during the past 15 years. Enterobacteriaceae are commonly found in the gastrointestinal tract and long-term intestinal carriage is considered important for the spread of ESBL and as a source of clinical infections. Oral biofilm such as supragingival plaque is known to contain numerous antibiotic resistance determinants and may also represent a poorly investigated site for ESBL carriage and further spread.
    Journal of Oral Microbiology 08/2014; 6. DOI:10.3402/jom.v6.24026
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background In Norway, it is recommended that children with Shiga-Toxin producing Escherichia coli (STEC) infections are excluded from daycare centers until up to five consecutive negative stool cultures are obtained. Children with gastrointestinal illness of unknown etiology are asked to remain home for 48 hours after symptoms subside. On 16 October 2012, two cases of STEC infection were reported from a daycare center, where other children were also symptomatic. Local health authorities temporarily closed the daycare center and all children and staff were screened for pathogenic E. coli. We present the results of the outbreak investigation in order to discuss the implications of screening and the exclusion policies for children attending daycare in Norway.Methods Stool specimens for all children (n¿=¿91) and employees at the daycare center (n¿=¿40) were tested for pathogenic E. coli. Information on demographics, symptoms and potential exposures was collected from parents through trawling interviews and a web-based questionnaire. Cases were monitored to determine the duration of shedding and the resulting exclusion period from daycare.ResultsWe identified five children with stx1- and eae-positive STEC O103:H2 infections, and one staff member and one child with STEC O91:H- infections. Three additional children who tested positive for stx1 and eae genes were considered probable STEC cases. Three cases were asymptomatic. Median length of time of exclusion from daycare for STEC cases was 53 days (range 9 days ¿ 108 days). Survey responses for 75 children revealed mild gastrointestinal symptoms among both children with STEC infections and children with negative microbiological results. There was no evidence of common exposures; person-to-person transmission was likely.Conclusions The results of screening indicate that E. coli infections can spread in daycare centres, reflected in the proportion of children with STEC and EPEC infections. While screening can identify asymptomatic cases, the implications should be carefully considered as it can produce unanticipated results and have significant socioeconomic consequences. Daycare exclusion policies should be reviewed to address the management of prolonged asymptomatic shedders.
    BMC Infectious Diseases 12/2014; 14(1):673. DOI:10.1186/s12879-014-0673-2 · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Shiga toxin-producing Escherichia coli (STEC) cause infections in humans ranging from asymptomatic carriage to bloody diarrhoea and haemolytic uremic syndrome (HUS). Here we present whole genome comparison of Norwegian non-O157 STEC strains with the aim to distinguish between strains with the potential to cause HUS and less virulent strains. Whole genome sequencing and comparisons were performed across 95 non-O157 STEC strains. Twenty-three of these were classified as HUS-associated, including strains from patients with HUS (n = 19) and persons with an epidemiological link to a HUS-case (n = 4). Genomic comparison revealed considerable heterogeneity in gene content across the 95 STEC strains. A clear difference in gene profile was observed between strains with and without the Locus of Enterocyte Effacement (LEE) pathogenicity island. Phylogenetic analysis of the core genome showed high degree of diversity among the STEC strains, but all HUS-associated STEC strains were distributed in two distinct clusters within phylogroup B1. However, non-HUS strains were also found in these clusters. A number of accessory genes were found to be significantly overrepresented among HUS-associated STEC, but none of them were unique to this group of strains, suggesting that different sets of genes may contribute to the pathogenic potential in different phylogenetic STEC lineages. In this study we were not able to clearly distinguish between HUS-associated and non-HUS non-O157 STEC by extensive genome comparisons. Our results indicate that STECs from different phylogenetic backgrounds have independently acquired virulence genes that determine pathogenic potential, and that the content of such genes is overlapping between HUS-associated and non-HUS strains.
    PLoS ONE 10/2014; 9(10):e111788. DOI:10.1371/journal.pone.0111788 · 3.53 Impact Factor

Full-text

Download
19 Downloads
Available from
Nov 24, 2014