Starting a new life: Sperm PLC-zeta mobilizes the Ca2+signal that induces egg activation and embryo development

Cell Signalling Laboratory, WHRI, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK.
BioEssays (Impact Factor: 4.84). 11/2011; 34(2):126-34. DOI: 10.1002/bies.201100127
Source: PubMed

ABSTRACT We have discovered that a single sperm protein, phospholipase C-zeta (PLCζ), can stimulate intracellular Ca(2+) signalling in the unfertilized oocyte ('egg') culminating in the initiation of embryonic development. Upon fertilization by a spermatozoon, the earliest observed signalling event in the dormant egg is a large, transient increase in free Ca(2+) concentration. The fertilized egg responds to the intracellular Ca(2+) rise by completing meiosis. In mammalian eggs, the Ca(2+) signal is delivered as a train of long-lasting cytoplasmic Ca(2+) oscillations that begin soon after gamete fusion and persist beyond the completion of meiosis. Sperm PLCζ effects Ca(2+) release from egg intracellular stores by hydrolyzing the membrane lipid PIP(2) and consequent stimulation of the inositol 1,4,5-trisphosphate (InsP(3) ) receptor Ca(2+) -signalling pathway, leading to egg activation and early embryogenesis. Recent advances have refined our understanding of how PLCζ induces Ca(2+) oscillations in the egg and also suggest its potential dysfunction as a cause of male infertility.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Metaphase-I-arrested eggs of marine protostome worms in the phylum Nemertea generate a series of point-source calcium waves during fertilization. Such calcium oscillations depend on inositol-1,4,5-trisphosphate-mediated calcium release from endoplasmic reticulum (ER) stores that undergo structural reorganizations prior to and after fertilization. This article reviews fertilization-induced calcium transients and ER dynamics in nemertean eggs and compares these topics to what has been reported for other animals in order to identify unifying characteristics and distinguishing features of calcium responses during fertilization across the animal kingdom.
    Biochemical and Biophysical Research Communications 04/2014; DOI:10.1016/j.bbrc.2014.03.156 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A consistently high level of stallion fertility plays an economically important role in modern horse breeding. We performed a genome-wide association study for estimated breeding values of the paternal component of the pregnancy rate per estrus cycle (EBV-PAT) in Hanoverian stallions. A total of 228 Hanoverian stallions were genotyped using the Equine SNP50 Beadchip. The most significant association was found on horse chromosome 6 for a single nucleotide polymorphism (SNP) within phospholipase C zeta 1 (PLCz1). In the close neighbourhood to PLCz1 is located CAPZA3 (capping protein (actin filament) muscle Z-line, alpha 3). The gene PLCz1 encodes a protein essential for spermatogenesis and oocyte activation through sperm induced Ca2+-oscillation during fertilization. We derived equine gene models for PLCz1 and CAPZA3 based on cDNA and genomic DNA sequences. The equine PLCz1 had four different transcripts of which two contained a premature termination codon. Sequencing all exons and their flanking sequences using genomic DNA samples from 19 Hanoverian stallions revealed 47 polymorphisms within PLCz1 and one SNP within CAPZA3. Validation of these 48 polymorphisms in 237 Hanoverian stallions identified three intronic SNPs within PLCz1 as significantly associated with EBV-PAT. Bioinformatic analysis suggested regulatory effects for these SNPs via transcription factor binding sites or microRNAs. In conclusion, non-coding polymorphisms within PLCz1 were identified as conferring stallion fertility and PLCz1 as candidate locus for male fertility in Hanoverian warmblood. CAPZA3 could be eliminated as candidate gene for fertility in Hanoverian stallions.
    PLoS ONE 10/2014; 9(10):e109675. DOI:10.1371/journal.pone.0109675 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A sperm-specific PLCζ is believed to play an essential role in oocyte activation during mammalian fertilization. Sperm PLCζ has been shown to trigger a prolonged series of repetitive Ca(2+) transients or oscillations in oocytes that precede activation. This remarkable intracellular Ca(2+) signalling phenomenon is a distinctive characteristic observed during in vitro fertilization by sperm. Previous studies have notably observed an apparent differential ability of PLCζ from disparate mammalian species to trigger Ca(2+) oscillations in mouse oocytes. However, the molecular basis and confirmation of the apparent PLCζ species difference in activity remains to be provided. In the present study, we provide direct evidence for the superior effectiveness of human PLCζ relative to mouse PLCζ in generating Ca(2+) oscillations in mouse oocytes. In addition, we have designed and constructed a series of human/mouse PLCζ chimeras to enable study of the potential role of discrete PLCζ domains in conferring the enhanced Ca(2+) signalling potency of human PLCζ. Functional analysis of these human/mouse PLCζ domain chimeras suggests a novel role of the EF hands domain in the species-specific differences in PLCζ activity. Our empirical observations are compatible with a basic mathematical model for the Ca(2+)-dependence of generating cytoplasmic Ca(2+) oscillations in mammalian oocytes by sperm PLCζ.
    Molecular Human Reproduction 01/2014; DOI:10.1093/molehr/gau011 · 3.48 Impact Factor