Article

Elimination of the Vesicular Acetylcholine Transporter in the Striatum Reveals Regulation of Behaviour by Cholinergic-Glutamatergic Co-Transmission

Molecular Brain Research Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
PLoS Biology (Impact Factor: 11.77). 11/2011; 9(11):e1001194. DOI: 10.1371/journal.pbio.1001194
Source: PubMed

ABSTRACT Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT) from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN) and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.

Download full-text

Full-text

Available from: Marco A M Prado, Jul 07, 2015
1 Follower
 · 
155 Views
  • Source
    • "Glutamate receptors also control dopamine release presynaptically (Desce et al., 1992; Krebs et al., 1991; Ché ramy et al., 1986a, 1996, 1998) and cholinergic interneurons have recently been shown to release glutamate (Higley et al., 2011; Guzman et al., 2011). Moreover, several effects evoked by cholinergic interneuron activity are thought to be mediated by glutamate and not by ACh (Guzman et al., 2011). Because of our findings that endogenous cholinergic activity drives dopamine release in a nAChR-dependent fashion, we next examined if this occurred, at least in part, through activation of AMPA receptors. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.
    Cell Reports 07/2012; 2(1):33-41. DOI:10.1016/j.celrep.2012.05.011 · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent work has provided compelling evidence that increased levels of acetylcholine (ACh) can be protective in heart failure, whereas reduced levels of ACh secretion can cause heart malfunction. Previous data show that cardiomyocytes themselves can actively secrete ACh, raising the question of whether this cardiomyocyte derived ACh may contribute to the protective effects of ACh in the heart. To address the functionality of this non-neuronal ACh machinery, we used cholinesterase inhibitors and a siRNA targeted to AChE (acetylcholinesterase) as a way to increase the availability of ACh secreted by cardiac cells. By using nitric oxide (NO) formation as a biological sensor for released ACh, we showed that cholinesterase inhibition increased NO levels in freshly isolated ventricular myocytes and that this effect was prevented by atropine, a muscarinic receptor antagonist, and by inhibition of ACh synthesis or vesicular storage. Functionally, cholinesterase inhibition prevented the hypertrophic effect as well as molecular changes and calcium transient alterations induced by adrenergic overstimulation in cardiomyocytes. Moreover, inhibition of ACh storage or atropine blunted the anti-hypertrophic action of cholinesterase inhibition. Altogether, our results show that cardiomyocytes possess functional cholinergic machinery that offsets deleterious effects of hyperadrenergic stimulation. In addition, we show that adrenergic stimulation upregulates expression levels of cholinergic components. We propose that this cardiomyocyte cholinergic signaling could amplify the protective effects of the parasympathetic nervous system in the heart and may counteract or partially neutralize hypertrophic adrenergic effects.
    Journal of Molecular and Cellular Cardiology 05/2012; 53(2):206-16. DOI:10.1016/j.yjmcc.2012.05.003 · 5.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cholinergic neurotransmission in the hippocampus is involved in cognitive functions, including learning and memory. Strategies to enhance septohippocampal cholinergic neurotransmission may therefore be of therapeutic value to limit cognitive decline during cholinergic dysfunction. In addition to current strategies being developed, such as the use of acetylcholinesterase inhibitors, enhancing acetylcholine (ACh) release may be critical for optimal cholinergic neurotransmission. Vesicular acetylcholine transporter (VAChT) activity limits the rate of formation of the readily releasable ACh pool. As such, we sought to determine the influence of increased VAChT expression on the septohippocampal cholinergic system. To do this, we used the B6.eGFPChAT congenic mouse, which we show contains multiple gene copies of VAChT. In this transgenic mouse, the increased VAChT gene copy number led to an increase in VAChT gene expression in the septum and a corresponding enhancement of VAChT protein in the hippocampal formation. VAChT overexpression enhanced the release of ACh from ex vivo hippocampal slices. From these findings, we conclude that VAChT overexpression is sufficient to enhance ACh release in the hippocampal formation. It remains to be established whether, in cases of cholinergic deficits, increasing VAChT expression would re-establish adequate levels of cholinergic neurotransmission, thereby providing a valid therapeutic target.
    Neuroscience 05/2012; 218:1-11. DOI:10.1016/j.neuroscience.2012.05.047 · 3.33 Impact Factor