Article

IMG/M: the integrated metagenome data management and comparative analysis system.

Biological Data Management and Technology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, CA 94702, USA.
Nucleic Acids Research (Impact Factor: 8.28). 11/2011; 40(Database issue):D123-9. DOI:10.1093/nar/gkr975
Source: PubMed

ABSTRACT The integrated microbial genomes and metagenomes (IMG/M) system provides support for comparative analysis of microbial community aggregate genomes (metagenomes) in a comprehensive integrated context. IMG/M integrates metagenome data sets with isolate microbial genomes from the IMG system. IMG/M's data content and analytical capabilities have been extended through regular updates since its first release in 2007. IMG/M is available at http://img.jgi.doe.gov/m. A companion IMG/M systems provide support for annotation and expert review of unpublished metagenomic data sets (IMG/M ER: http://img.jgi.doe.gov/mer).

0 0
 · 
0 Bookmarks
 · 
135 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Marine salterns are artificial multipond systems designed for the commercial production of salt by evaporation of seawater. We report here the metagenomic sequence of the prokaryotic microbiota of a pond with intermediate salinity (21% total salts) of a saltern located in Isla Cristina, Huelva, southwest Spain.
    Genome announcements. 01/2014; 2(1).
  • [show abstract] [hide abstract]
    ABSTRACT: In an acetate-fed anaerobic-aerobic membrane bioreactor with deteriorated enhanced biological phosphorus removal (EBPR), Defluviicoccus-related tetrad-forming organisms (DTFO) were observed to predominate in the microbial community. Using metagenomics, a partial genome of the predominant DTFO, 'Candidatus Defluviicoccus tetraformis strain TFO71,' was successfully constructed and characterized. Examining the genome confirmed the presence of genes related to the synthesis and degradation of glycogen and polyhydroxyalkanoate (PHA), which function as energy and carbon storage compounds. TFO71 and 'Candidatus Accumulibacter phosphatis' (CAP) UW-1 and CAP UW-2, representative polyphosphate-accumulating organisms (PAO), have PHA metabolism-related genes with high homology, but TFO71 has unique genes for PHA synthesis, gene regulation, and granule management. We further discovered genes encoding DTFO polyphosphate (polyP) synthesis, suggesting that TFO71 may synthesize polyP under untested conditions. However, TFO71 may not activate these genes under EBPR conditions because the retrieved genome does not contain all inorganic phosphate transporters that are characteristic of PAOs (CAP UW-1, CAP UW-2, Microlunatus phosphovorus NM-1, and Tetrasphaera species). As a first step in characterizing EBPR-associated DTFO metabolism, this study identifies important differences between DTFO and PAO that may contribute to EBPR community competition and deterioration.
    Environmental Microbiology 01/2014; · 5.76 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: MetaMetaDB (http://mmdb.aori.u-tokyo.ac.jp/) is a database and analytic system for investigating microbial habitability, i.e., how a prokaryotic group can inhabit different environments. The interaction between prokaryotes and the environment is a key issue in microbiology because distinct prokaryotic communities maintain distinct ecosystems. Because 16S ribosomal RNA (rRNA) sequences play pivotal roles in identifying prokaryotic species, a system that comprehensively links diverse environments to 16S rRNA sequences of the inhabitant prokaryotes is necessary for the systematic understanding of the microbial habitability. However, existing databases are biased to culturable prokaryotes and exhibit limitations in the comprehensiveness of the data because most prokaryotes are unculturable. Recently, metagenomic and 16S rRNA amplicon sequencing approaches have generated abundant 16S rRNA sequence data that encompass unculturable prokaryotes across diverse environments; however, these data are usually buried in large databases and are difficult to access. In this study, we developed MetaMetaDB (Meta-Metagenomic DataBase), which comprehensively and compactly covers 16S rRNA sequences retrieved from public datasets. Using MetaMetaDB, users can quickly generate hypotheses regarding the types of environments a prokaryotic group may be adapted to. We anticipate that MetaMetaDB will improve our understanding of the diversity and evolution of prokaryotes.
    PLoS ONE 01/2014; 9(1):e87126. · 3.73 Impact Factor

Full-text (2 Sources)

View
21 Downloads
Available from
Feb 6, 2013