Article

Galantamine elicits neuroprotection by inhibiting iNOS, NADPH oxidase and ROS in hippocampal slices stressed with anoxia/reoxygenation

Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain.
Neuropharmacology (Impact Factor: 4.82). 11/2011; 62(2):1082-90. DOI: 10.1016/j.neuropharm.2011.10.022
Source: PubMed

ABSTRACT Galantamine is a drug currently used to treat Alzheimer's disease (AD); in this group of patients it has been observed that concomitant ischemic brain injury can accelerate their cognitive deficit. We have previously shown that galantamine can afford neuroprotection on in vitro and in vivo models related to brain ischemia. In this context, this study was planned to investigate the intracellular signaling pathways implicated in the protective effect of galantamine on an in vitro brain ischemia-reperfusion model, namely rat hippocampal slices subjected to oxygen and glucose deprivation (OGD) followed by reoxygenation. Galantamine protected hippocampal slices subjected to OGD in a concentration-dependent manner; at 15 μM, cell death was reduced to almost control levels. The neuroprotective effects of galantamine were reverted by mecamylamine and AG490, but not by atropine, indicating that nicotinic receptors and Jak2 participated in this action. Galantamine also prevented p65 translocation into the nucleus induced by OGD; this effect was also linked to nicotinic receptors and Jak2. Furthermore, galantamine reduced iNOS induction and production of NO caused by OGD via Jak2. ROS production by NADPH oxidase (NOX) activation was also inhibited by galantamine. In conclusion, galantamine afforded neuroprotection under OGD-reoxygenation conditions by activating a signaling pathway that involves nicotinic receptors, Jak2 and the consequent inhibition of NOX and NFκB/iNOS. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

Download full-text

Full-text

Available from: Maria Dolores Martin-de-Saavedra, Feb 07, 2015
1 Follower
 · 
166 Views
 · 
50 Downloads
  • Source
    • "The objective of the present study is to compile a comprehensive database from natural herbs in which the key constituents have been chemically characterized. It was inspired by the fact that the natural AChEI, galantamine, the FDA approved drug to treat mild-to-moderate AD, is a natural alkaloid that has only mild AChEI activity but strong neuroprotective efficacy [19]. Using this database, we have successfully identified some groups of phytochemicals that have mild AChEI activity but showed very promising neuroprotection in neuronal cell cultures induced by oxidative damages. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acetylcholinesterase inhibitors are prominent alternative in current clinical treatment for AD patients. Therefore, there is a continued need to search for novel AChEIs with good clinical efficacy and less side effects. By using our in-house natural product database and AutoDock Vina as a tool in docking study, we have identified twelve phytochemicals (emodin, aloe-emodin, chrysophanol, and rhein in Rhei Radix Et Rhizoma; xanthotoxin, phellopterin, alloisoimperatorin, and imperatorin in Angelicae dahuricae Radix; shikonin, acetylshikonin, isovalerylshikonin, and β,β-dimethylacrylshikonin in Arnebiae Radix) as candidates of AChEIs that were not previously reported in the literature. In addition to AChEI activity, a series of cell-based experiments were conducted for the investigation of their neuroprotective activities. We found that acetylshikonin and its derivatives prevented apoptotic cell death induced by hydrogen peroxide in human and rat neuronal SH-SY5Y and PC12 cells at 10 μM. We showed that acetylshikonin exhibited the most potent antiapoptosis activity through the inhibition of the generation of reactive oxygen species as well as protection of the loss of mitochondria membrane potential. Furthermore, we identified for the first time that the upregulation of heme oxygenase 1 by acetylshikonin is a key step mediating its antiapoptotic activity from oxidative stress in SH-SY5Y cells.
    Evidence-based Complementary and Alternative Medicine 11/2013; 2013:937370. DOI:10.1155/2013/937370 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is a key pathologic factor in neurodegenerative diseases such as Alzheimer and Parkinson diseases (AD, PD). The failure of free-radical-scavenging antioxidants in clinical trials pinpoints an urgent need to identify and to block major sources of oxidative stress in neurodegenerative diseases. As a major superoxide-producing enzyme complex in activated phagocytes, phagocyte NADPH oxidase (PHOX) is essential for host defense. However, recent preclinical evidence has underscored a pivotal role of overactivated PHOX in chronic neuroinflammation and progressive neurodegeneration. Deficiency in PHOX subunits mitigates neuronal damage induced by diverse insults/stresses relevant to neurodegenerative diseases. More importantly, suppression of PHOX activity correlates with reduced neuronal impairment in models of neurodegenerative diseases. The discovery of PHOX and non-phagocyte NADPH oxidases in astroglia and neurons further reinforces the crucial role of NADPH oxidases in oxidative stress-mediated chronic neurodegeneration. Thus, proper modulation of NADPH oxidase activity might hold therapeutic potential for currently incurable neurodegenerative diseases.
    Trends in Pharmacological Sciences 04/2012; 33(6):295-303. DOI:10.1016/j.tips.2012.03.008 · 9.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims. We asked whether the neuroprotective effect of cholinergic microglia stimulation during an ischemic event acts via a mechanism involving the activation of nuclear factor erythroid 2 related factor 2 (Nrf2) and/or the expression of its target cytoprotective gene, heme oxygenase-1 (HO-1). Specifically, the protective effect of the pharmacologic alpha-7 nicotinic receptor (α7 nAChR) agonist PNU282987 was analyzed in organotypic hippocampal cultures (OHCs) subjected to oxygen and glucose deprivation in vitro as well as in photothrombotic stroke in vivo. Results. OHCs exposed to oxygen and glucose deprivation (OGD) followed by re-oxygenation, elicited cell death, measured by propidium iodide and MTT staining. Activation of α7 nAChR by PNU282987, after OGD, reduced cell death, ROS production and TNF release. This was associated with induction of HO-1 expression; an effect reversed by the α-bungarotoxin and by tin protoporhyrin IX (SnPP). The protective effect of PNU282987 was lost in microglia-depleted OHCs as well as in OHCs from Nrf2 deficient vs. wild type mice, an effect associated with suppression of HO-1 expression in microglia. Administration of PNU282987 1 h after induction of photothrombotic stroke in vivo reduced infarct size and improved motor skills in Hmox1lox/lox mice, that express normal levels of HO-1 but not in LysMCreHmox1∆/∆ in which HO-1 expression is inhibited in myeloid cells, including the microglia. Innovation. This study suggests the participation of the microglial α7 nAChR in the "brain cholinergic anti-inflammatory pathway". Conclusion. Activation of the α7 nAChR/Nrf2/HO-1 axis in microglia regulates neuroinflammation and oxidative stress affording neuroprotection under brain ischemic conditions.
    Antioxidants & Redox Signaling 01/2013; 19(11). DOI:10.1089/ars.2012.4671 · 7.67 Impact Factor
Show more